

ESO, Karl-Schwarzschild-Str.2 D-85748 Garching bei München, Germany Telephone: +49 (0)89 3200 6855 Telefax: +49 (0)89 3200 6480 hubble@eso.org

www.spacetelescope.org

Keywords: Neutron stars, gravitational waves, kilonova

Hubblecast Episode 103: Hubble observes source of gravitational waves for the first time	Visual notes
00:03 [Narrator] 1. Astronomers using the NASA/ESA Hubble Space Telescope have observed a visible counterpart to gravitational waves for the first time: a kilonova from merging neutron stars.	
00:16 2. Intro	BISDE LE
00:22 [Narrator] 3. On August the 17th, 2017, the LIGO–Virgo collaboration detected gravitational waves rippling through the fabric of space-time.	Hubble observes source of gravitational waves for the first time

02:58 [Narrator] 7. This event marks the start of a new era of multi-messenger astronomy. For the first time in history we can now combine light signals with gravitational waves, to provide a totally new way to probe the Universe. 02:58 (Image: State of the Universe in the start of a new era of multi-messenger astronomy. For the first time in history we can now combine light signals with gravitational waves, to provide a totally new way to probe the Universe. 03:25 8. Outro

Ends 04:19