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ABSTRACT

Aims. Over its lifetime and despite not being a survey telescope, the Hubble Space Telescope (HST) has obtained multi-epoch obser-
vations by multiple, diverse observing programs, providing the opportunity for a comprehensive variability search aiming to uncover
new variables. We have therefore undertaken the task of creating a catalog of variable sources based on archival HST photometry. In
particular, we have used version 3 of the Hubble Source Catalog (HSC), which relies on publicly available images obtained with the
WFPC2, ACS, and WFC3 instruments on board the HST.
Methods. We adopted magnitude-dependent thresholding in median absolute deviation (a robust measure of light curve scatter)
combined with sophisticated preprocessing techniques and visual quality control to identify and validate variable sources observed by
Hubble with the same instrument and filter combination five or more times.
Results. The Hubble Catalog of Variables (HCV) includes 84,428 candidate variable sources (out of 3.7 million HSC sources that
were searched for variability) with V ≤ 27 mag; for 11,115 of them the variability is detected in more than one filter. The data points
in the light curves of the variables in the HCV catalog range from five to 120 points (typically having less than ten points); the time
baseline ranges from under a day to over 15 years; while ∼8% of all variables have amplitudes in excess of 1 mag. Visual inspection
performed on a subset of the candidate variables suggests that at least 80 % of the candidate variables that passed our automated
quality control are true variable sources rather than spurious detections resulting from blending, residual cosmic rays, and calibration
errors.
Conclusions. The HCV is the first, homogeneous catalog of variable sources created from the highly diverse, archival HST data and
currently is the deepest catalog of variables available. The catalog includes variable stars in our Galaxy and nearby galaxies, as well
as transients and variable active galactic nuclei. We expect that the catalog will be a valuable resource for the community. Possible
uses include searches for new variable objects of a particular type for population analysis, detection of unique objects worthy of
follow-up studies, identification of sources observed at other wavelengths, and photometric characterization of candidate progenitors
of supernovae and other transients in nearby galaxies. The catalog is available to the community from the ESA Hubble Science
Archive (eHST) at the European Space Astronomy Centre (ESAC) and the Mikulski Archive for Space Telescopes (MAST) at Space
Telescope Science Institute (STScI).
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? Full Tables 9 and 10 are only available at the CDS via anony-
mous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-
strasbg.fr/viz-bin/qcat?J/A+A/vol/page

1. Introduction

Diverse astrophysical processes related to stellar evolution, su-
permassive black holes, and propagation of light through curved

Article number, page 1 of 32



A&A proofs: manuscript no. output

space-time manifest themselves in optical variability. Standard
candles such as Cepheid variables (Freedman et al. 2001; Sub-
ramanian et al. 2017) and Type Ia supernovae (SNe; Riess et al.
2018) are the crucial elements of the distance ladder and im-
portant probes of Cosmology in the local Universe. Eclipsing
binaries (Pietrzyński et al. 2013, 2019), RR Lyrae (de Grijs et al.
2017), and Mira variables (Huang et al. 2018) in the local Uni-
verse as well as Type II SNe (Czerny et al. 2018) at larger dis-
tances verify and improve the distances derived from Cepheids
and SNe Ia. For an overview of stellar variability types we refer
the reader to the classification scheme1 of the General Catalog of
Variable Stars (GCVS; Samus’ et al. 2017), as well as the books
by Hoffmeister et al. (1990) and Catelan & Smith (2015).

A number of current time-domain surveys explore optical
(DES – Dark Energy Survey Collaboration et al. 2016; SkyMap-
per – Scalzo et al. 2017; Evryscope – Law et al. 2014) and
near-IR variability (VVV – Minniti et al. 2010; VMC – Cioni
et al. 2011) across large areas of the sky in search for microlens-
ing events (MOA – Bond et al. 2001; MACHO – Becker et al.
2005; EROS – Tisserand et al. 2007; OGLE – Udalski et al.
2015), transiting exoplanets (HATNet – Bakos et al. 2004; Su-
perWASP – Pollacco et al. 2006; MASCARA – Talens et al.
2017; NGTS – Wheatley et al. 2018), minor bodies of the so-
lar system (CSS – Drake et al. 2009; Pan-STARRS – Rest et al.
2014; ATLAS – Heinze et al. 2018), Galactic and extragalac-
tic transients (ASAS-SN – Shappee et al. 2014; Kochanek et al.
2017; ZTF – Bellm et al. 2019), often combining multiple scien-
tific tasks within one survey. The space-based planet-searching
missions, such as CoRoT (Auvergne et al. 2009), Kepler/K2
(Borucki et al. 2010; Koch et al. 2010), and TESS (Sullivan et al.
2015) have identified thousands of exoplanets. The Gaia (Gaia
Collaboration et al. 2016) astrometric survey identifies transients
(Wyrzykowski et al. 2012) and provides time-domain informa-
tion for the entire sky. These surveys also collect a wealth of in-
formation on variable stars in our Galaxy (Hartman et al. 2011;
Oelkers et al. 2018; Jayasinghe et al. 2018; Heinze et al. 2018).

The Hubble Space Telescope (HST) also provides time-
domain information, as it has been observing the sky for over 25
years and has visited some regions of the sky multiple times over
its lifetime. It thus offers the opportunity to search for variable
objects at a range of magnitudes that are difficult to reach with
ground-based telescopes. The magnitude depth, along with the
superb resolution achieved by HST and the long time-baseline
of its operation are the features that make such a variable source
catalog unique. The Hubble Source Catalog (HSC; Whitmore
et al. 2016) has recently provided photometric measurements of
all sources detected from a homogeneous reduction and analysis
of archival images from the HST, thereby enabling such a vari-
ability search. Motivated by all of the above, we have undertaken
the task of identifying variable sources among the sources in the
HSC, aiming to exploit this Level 2 Hubble data product, and
create a higher level product, the “Hubble Catalog of Variables”.
This work presents the results of this effort, named the “HCV
project”, which was undertaken by a team at the National Ob-
servatory of Athens and funded by the European Space Agency
over four years, starting in 2015.

Table 1 puts the HCV catalog in the context of current and
future deep time-domain surveys, listing the filters, magnitude
limit, number of sources, epochs, and time baseline. It should
be noted that the HCV is not a volume or magnitude limited
survey itself, as it relies on individual, largely inhomogeneous,

1 http://www.sai.msu.su/gcvs/gcvs/iii/vartype.txt

Table 1. Selected deep optical time-domain surveys.

Name Filters Limit Sources Epochs Baseline
(mag) ×106 (years)

SDSS S82 ugriz r ∼ 21.5 4 134 8
CRTS clear V ∼ 21.5 500 300 7
OGLE VI I ∼ 21.7 500 300 25
ATLAS oc r ∼ 18 142 100 2

Gaia G GBP GRP G∼ 21 1700 12 2
ZTF gri r ∼ 20.5 1000 300 1
PS1 grizy r ∼ 21.8 3000 60 3
HCV various V ∼ 26 108 5 23
LSST ugrizy r ∼ 24.5 18000 1000 10

References: SDSS S82 (Bramich et al. 2008); CRTS (Drake et al. 2009);
OGLE (Udalski et al. 2015); ATLAS (Heinze et al. 2018); Gaia (Gaia
Collaboration et al. 2018); ZTF (Bellm et al. 2019); PS1 (Chambers
et al. 2016); HCV (this work and Whitmore et al. 2016); LSST (Ivezić
et al. 2019).

sets of observations2. The magnitude limit listed is the reported
single-exposure detection limit of each survey. Variability analy-
sis is typically possible only for sources well above the detection
limit. The listed number of epochs is either a typical one for the
survey or the lowest number of observations used for variabil-
ity search (e.g., a minimum of five epochs is adopted for the
HCV). The number of sources, epochs, and the corresponding
time baseline vary from source to source within a survey and
many of the surveys are still ongoing, so the numbers reported
in Table 1 are indicative. For ongoing surveys, we list the num-
bers corresponding to the current data release (e.g., there are 108
million sources in the latest release of the HSC, which is the
input for the HCV catalog), while for the Large Synoptic Sur-
vey Telescope (LSST) the numbers correspond to the planned
ten-year survey. It is clear that the HCV catalog is considerably
deeper than other contemporary surveys, while having a com-
parable number of sources, despite the fact that it covers a tiny
fraction of the sky compared to the other surveys listed in Ta-
ble 1. Source confusion in crowded fields of nearby galaxies is
another important parameter when comparing HSC to ground-
based surveys: many of the HSC sources cannot be accurately
measured from the ground even if they are sufficiently bright.

The time domain and variability properties of astronomical
sources provide a wealth of information that can be very use-
ful, for example, for characterizing the fundamental properties of
stars, or for identifying particular types of sources from a large
dataset. Objects showing variations in flux may be associated
with variable stars in our own Galaxy, stars in nearby galaxies, or
distant active galactic nuclei (AGN), or possibly transient events
such as novae and SNe. The HCV aims to extend our knowledge
of variable stars to fainter magnitudes and crowded regions of
stellar clusters and distant galaxies, which are inaccessible by
ground-based surveys.

1.1. The Hubble Source Catalog

The HST obtains exceptionally deep imaging thanks to the low
sky background (free from airglow, scattering, and absorption in
the atmosphere of the Earth), a sharp and consistent PSF, and a
wide field of view compared to ground-based adaptive optics in-
struments (Lanzerotti 2005). The HST instruments are sensitive

2 Statistical analyses based on the HCV catalog should take this into
account, as any conclusions will be limited to the sources of the HCV
and cannot be generalised for the source population under study.
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to ultraviolet (UV) light not accessible from the ground and to
infrared (IR) radiation that is heavily contaminated by airglow
and atmospheric absorption. Since its launch in 1990, a variety
of instruments have been installed during five astronaut servicing
missions. Imaging instruments in the UV and optical include the
initial Wide Field and Planetary Camera, followed by the Wide
Field and Planetary Camera 2 (WFPC2; 1993–2009), the Ad-
vanced Camera for Surveys (ACS, 2002–present), and the Wide
Field Camera 3 (WFC3, 2009–present) in the optical. In the near-
IR, the Near Infrared Camera and Multi-Object Spectrometer
(NICMOS, 1997–1999, 2002–2008) pioneered IR studies using
Hubble. NICMOS was succeeded by the much more powerful
IR channel of WFC3 in 2009.

The Hubble Legacy Archive (HLA; Jenkner et al. 2006) aims
to increase the scientific output from the HST by providing on-
line access to advanced data products from its imaging instru-
ments. The most advanced form of these data products are lists
of objects detected in visit-combined images3.

Cosmic ray hits limit the practical duration of an individual
exposure with a CCD. Primary cosmic rays of Galactic origin
together with protons trapped in the inner Van Allen belt create a
hostile radiation environment in low Earth orbit (Badhwar 1997),
compared to the one faced in ground-based CCD observations
where the primary sources of particles are the secondary cosmic-
ray muons and natural radioactivity (Groom 2002). In a 1800 s
HST exposure, between 3 to 9 % of pixels will be affected by
cosmic ray hits depending on the level of particle background
and the instrument used (McMaster & et al. 2008; Dressel 2012).
To combat the effects of cosmic ray contamination, most HST
observing programs split observations into multiple exposures.
The HLA relies on the AstroDrizzle code (Hack et al. 2012) to
stack individual exposures obtained within one visit and produce
images free of cosmic rays. The AstroDrizzle code corrects
for geometrical distortion in the instruments and also handles
the case where the image pointing center is dithered to different
positions during the visit (which is a commonly used strategy to
eliminate the effects of bad pixels and improve the sampling in
the combined image).

The SExtractor code (Bertin & Arnouts 1996) is used to
detect sources on these images, perform aperture photometry and
measure parameters characterizing the source size and shape.
Most HST observations are performed using multiple filters. To
facilitate cross-matching between objects detected with differ-
ent filters, images in all filters obtained during a given visit are
stacked together in a “white-light” image. Stacked images in
each individual filter are also produced and sampled to the same
pixel grid as the white-light image. The SExtractor program is
executed in its “dual-image” mode to use the white-light image
for source detection and the stacked filter images for photometry.
Each visit results in a list of sources, with every source having a
magnitude (or an upper limit) measurement in each filter used in
this visit.

The Hubble Source Catalog4 (HSC; Whitmore et al. 2016,
Lubow & Budavári 2013) combines source lists (Whitmore et al.
2008) generated from individual HST visits into a single mas-
ter catalog. The HSC creates a combined source catalog from

3 An HST visit is a series of one or more consecutive exposures of a
target source interrupted by the instrumental overheads and Earth oc-
cultations, but not repointing to another target. While exposures may be
taken at several different positions, all exposures in a visit rely on the
same guide star as a pointing reference.
4 The HSC version 1 was released on 2015 February 26, HSC version 2
on 2016 September 30, version 2.1 on 2017 January 25 (the only change
was the addition of links to spectra), and HSC version 3 on 2018 July 9.

a diverse set of observations taken with many different instru-
ments and filters (by various investigators) after the data pro-
prietary period expires. This approach was pioneered by X-ray
catalogs such as the WGACAT (derived from pointed observa-
tions of ROSAT; White et al. 1994), the Chandra Source Cat-
alog (Evans et al. 2010), the XMM-Newton serendipitous sur-
vey (Rosen et al. 2016), and the catalogs derived from Swift
X-ray telescope observations (Evans et al. 2014; D’Elia et al.
2013). The same approach was used to create catalogs of UV
and optical sources detected by the OM and UVOT instruments
of XMM-Newton and Swift, respectively (Page et al. 2012; Yer-
shov 2014). The more recent All-sky NOAO Source Catalog
(Nidever et al. 2018) combines public observations taken with
the CTIO-4m and KPNO-4m telescopes equipped with wide-
field mosaic cameras.

In many ways the challenge faced by the HSC project to in-
tegrate HST observations is the most daunting of all these mis-
sions and observatories. The field of view of the Hubble cameras
is tiny, with even the “wide-field” cameras covering only 0.003
square degrees (less than 10−7 of the sky). That leads to highly
variable sky coverage even in the most commonly used filters.
It also makes reference objects from external catalogs such as
Gaia relatively rare in the images. A major complication is that
the uncertainty in the pointing position on the sky is much larger
than the angular resolution of the HST images, making it nec-
essary to correct for comparatively large pointing uncertainties
when matching observations taken at different epochs.

The HSC provides a homogeneous solution to the problem of
correcting absolute astrometry for the HST images and catalogs.
Typical initial astrometric errors range from 0.5 to 2" (depending
on the epoch of the observations), due to uncertainties in the
guide star position and in the calibration of the camera’s focal
plane position and internal geometric distortion (both of which
change over time). In some cases much larger errors (up to 100")
are found; those are probably attributed to selection of the wrong
guide star for pointing by the onboard acquisition system. The
HSC uses a two-step algorithm to correct the astrometry, first
matching to an external reference catalog to correct large shifts,
and then using a cross-match between catalogs from repeated
HST observations of the region to achieve a fine alignment of the
images and catalogs (Budavári & Lubow 2012; Whitmore et al.
2016). The fine alignment algorithm includes features designed
to produce good results even in extremely crowded regions such
as globular clusters and the plane of the Milky Way.

The current release of the HSC is version 35 (HSC v3),
which includes 542 million measurements of 108 million
unique sources detected on images obtained with the WFPC2,
ACS/WFC, WFC3/UVIS, and WFC3/IR instruments that were
public as of 2017 October 1 (based on source lists from HLA
Data Release 10 or DR106). The observations include measure-
ments using 108 different filters over 23 years (1994–2017) and
cover 40.6 square degrees (∼ 0.1% of the sky).

The HSC v3 release contains significant improvements in
both the astrometry and photometry compared with earlier re-
leases7. The external astrometric calibration is based primar-
ily on Gaia DR1, falling back on the Pan-STARRS, SDSS,
and 2MASS catalogs when too few Gaia sources are available.
About 2/3 of the images are astrometrically calibrated using
Gaia, and 94% of the images have external astrometric cali-
brations. The photometric improvements are mainly the result

5 https://archive.stsci.edu/hst/hsc
6 https://hla.stsci.edu
7 See online documentation for HSC v3.
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Fig. 1. Median absolute deviation (MAD; see Section 4) as a function
of the median magnitude in filter F467M in globular cluster M4 for
HSC v2 (upper panel) and HSC v3 (lower panel). The plot includes
5300 objects (black dots) that have more than 50 measurements in the
WFC3/UVIS F467M filter. The red and blue lines represent the me-
dian noise for sources with magnitudes brighter than 21 in HSC v2 and
HSC v3, respectively. This field was affected by image alignment prob-
lems that have been corrected in HSC v3, which resulted in improved
accuracy of the photometry.

of an improved alignment algorithm used to match exposures
and filters in the HLA image processing. There were also im-
provements and bug fixes for the sky-matching algorithm and
the SExtractor background computation that significantly im-
proved both the photometry and the incidence of spurious de-
tections near the edges of images. Many of the improvements in
HSC v3 were the direct result of testing and analysis by the HCV
team at the National Observatory of Athens.

The median relative astrometric accuracy (repeatability of
measurements) is 7.6 mas for the whole catalog, but it varies
depending on the instrument, from 5 mas for WFC3/UVIS to
25 mas for WFPC2. The absolute astrometric accuracy is deter-
mined by the accuracy of the external catalog used as the refer-
ence for a given HST field. As Gaia DR2 was not available at
the time HSC v3 was created, proper motions of reference stars
used to tie the HST astrometry to the external catalog could not
be accounted for.

The photometric accuracy of HSC v3 is limited by the signal-
to-noise of the observations, the accuracy of HST magnitude
zero-points, the residual sensitivity variations across the field of
view of the instrument, due to imperfect flat-fielding and charge
transfer efficiency corrections, and, for the fainter sources, the
use of aperture rather than PSF-fitting photometry, which mainly
affects crowded fields. For objects with adequate signal-to-noise,
the photometric accuracy is generally about 1.5–2%. Figure 1
demonstrates the accuracy in the field of globular cluster M4 and
the improvement in HSC v3 compared with the previous release,
HSC v2.

1.2. An overview of variability detection techniques

The simplest way of finding variable sources is pair-wise im-
age comparison, used since the early days of photographic as-
tronomy (Hoffmeister et al. 1990). The contemporary approach

to image comparison, known as the difference image analysis
(DIA; Alard & Lupton 1998; Bramich et al. 2016; Zackay et al.
2016; Soares-Furtado et al. 2017) is effective in identifying vari-
able sources in crowded fields (e.g. Zebrun et al. 2001; Bonanos
& Stanek 2003; Zheleznyak & Kravtsov 2003). The intrinsic
limitation of the two-image technique is that variations in the
source brightness between the images need to be large compared
to image noise in order to be detected.

One may use aperture or point-spread function fitting pho-
tometry to measure the source brightness on multiple original
(or difference) images, constructing the light curve. Using mul-
tiple measurements one may identify brightness variations with
an amplitude below the noise level of individual measurements.
One may test the hypothesis that a given object’s brightness
is constant given the available photometric measurements and
their uncertainties (Eyer 2005; Huber et al. 2006; Piquard et al.
2001). This is the standard variability detection approach in X-
ray astronomy, where the uncertainties are well known as they
are typically dominated by photon noise (Scargle 1998). The
hypothesis testing is less effective for optical and near-IR pho-
tometry, as the measurement uncertainties are dominated by the
poorly-constrained systematic errors for all sources except the
ones close to the detection limit. The scatter of brightness mea-
surements of a non-variable star may be used to estimate pho-
tometric uncertainty (Howell et al. 1988; de Diego 2010) un-
der the assumption that the measurement uncertainties are the
same for sources of the same brightness. Relying on this as-
sumption, one may construct various statistical measures of scat-
ter (Kolesnikova et al. 2008; Dutta et al. 2018) or smoothness
(Welch & Stetson 1993; Stetson 1996; Mowlavi 2014; Rozy-
czka et al. 2018) of a light curve to identify variable sources (for
a review see Sokolovsky et al. 2017b; Ferreira Lopes & Cross
2016, 2017). Hereafter, we refer to these measures of scatter and
smoothness (degree of correlation between consecutive magni-
tude measurements) as “variability indices” (Stetson 1996; Shin
et al. 2009; Ferreira Lopes & Cross 2016, e.g.). They are also
known as “variability features” in the machine learning context
(Kim et al. 2014; Nun et al. 2015; Pashchenko et al. 2018).

Period search is a primary variable star investigation tool and
also a very efficient method of variable star identification (Kim
et al. 2014; Drake et al. 2014, 2017; Chen et al. 2018). While
many types of variable stars show periodic or semi-periodic light
variations, photometric errors are expected to be aperiodic, or
associated with a known periodic process inherent to the obser-
vations (diurnal cycle, periodic guiding errors, orbital period of a
space borne telescope, etc.). These spurious periodicities can be
identified using the window function (Deeming 1975). The down
side of the period search is that it is computationally expensive,
requires hundreds of light curve points for the period search to
be reliable (Graham et al. 2013), and excludes the class of non-
periodic variables.

To identify specific types of variable objects such as
Cepheids, RR Lyrae stars, and transiting exoplanets, one may
utilize template fitting. This dramatically increases the search
sensitivity to a specific type of variability at the cost of the loss
of generality. The sensitivity gain is especially evident for exo-
planet transits that typically cannot be identified in ground-based
photometry using general-purpose variability detection methods.
If templates for multiple variability types are fitted, classification
of variable sources is performed simultaneously with their detec-
tion (Layden et al. 1999; Angeloni et al. 2014).

The output of multiple variability detection tools may be
combined using principal component analysis (Moretti et al.
2018), supervised (Pashchenko et al. 2018) or unsupervised ma-
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chine learning (Shin et al. 2009, 2012). Machine learning may be
applied to design new variability detection statistics (Mackenzie
et al. 2016; Pashchenko et al. 2018).

Visual inspection of light curves and images of candidate
variables selected using the above methods remains an impor-
tant quality control tool. It is always applied when one aims to
produce a clean list of variable stars (e.g. Pawlak et al. 2016;
Klagyivik et al. 2016; Salinas et al. 2018; Jayasinghe et al. 2018)
rather than a (more extensive, but contaminated) list of can-
didate variables (e.g. Oelkers et al. 2018; Heinze et al. 2018).
Both types of lists may be useful. Consider two example prob-
lems: a) the study of period distributions of W UMa type binaries
(which requires confidence in classification of the studied ob-
jects as binaries of this particular type) and b) selection of non-
variable stars in a given field (to be used as photometric stan-
dards or for microlensing studies). In the latter case, it is more
important to have a complete list of variable stars, rather than a
clean one.

Visual inspection is needed to control various instrumental
effects, which produce light curves that are smooth and/or have
an elevated scatter. One of the most important effects is the vari-
able amount of blending between nearby sources (e.g. Hartman
et al. 2011). The degree of blending may vary with seeing (for
ground-based observations), or with the position angle of the
telescope if its point spread function (PSF) is not rotationally
symmetric (e.g., due to the diffraction spikes produced by spi-
ders holding the telescope’s secondary mirror). If aperture pho-
tometry is performed, light from nearby sources may cause ad-
ditional errors in the position where the aperture is placed over
the source in a given image, which can lead to large errors in
the measured source flux. Depending on the optical design of
the telescope, slight focus changes may have noticeably differ-
ent effects on the PSF size and shape depending on the source
color (e.g. Sokolovsky et al. 2014). The amount of blending may
also change if one of the blended sources is variable. Other ef-
fects that may corrupt photometry of an individual source in-
clude the various detector artifacts (hot pixels, bad columns, cos-
mic ray hits) or the proximity to the frame edge/chip gap. Un-
corrected sensitivity variations across the CCD (due to imper-
fect flat-fielding and charge transfer inefficiencies) coupled with
the source image falling on different CCD pixels at different ob-
serving epochs may produce artificial variations in a light curve.
If the sensitivity varies smoothly across the CCD chip affecting
nearby sources in a similar way, one may try to correct the light
curves for these variations using algorithms like SysRem (Tamuz
et al. 2005), a trend filtering algorithm (Kovács et al. 2005; Kim
et al. 2009; Gopalan et al. 2016), or local zero-point correction
(Section 3).

In this paper, we describe the HCV8 system and catalog
resulting from a systematic search for variable objects in the
HSC v3. It should be noted that “HCV” can either refer to the
processing system (i.e., the development of the hardware, soft-
ware system and pipeline to create the catalog) or the catalog
itself. The paper is structured as follows: Section 2 presents
an overview of the HCV system developed to identify variable
sources in the HSC. Section 3 describes the preprocessing ap-
plied to the HSC photometry, while Section 4 describes the al-
gorithm for selecting candidate variables. Section 5 presents the
algorithm adopted for validating the candidate variables. Section
6 presents the performance and limitations of the HCV catalog,

8 Preliminary reports on the progress of the HCV project were pre-
sented by Gavras et al. (2017), Sokolovsky et al. (2017a), Yang et al.
(2018), and Sokolovsky et al. (2018).

while Section 7 outlines the statistics of the HCV catalog and
highlights some scientific results. A summary is given in Sec-
tion 8.

2. HCV system overview

The HCV processing system aspires to identify all the variable
and transient sources in the HSC through simple mathematical
techniques, thus producing the HCV catalog.

The sole data input to the HCV pipeline is the HSC, which
provides a set of tables containing specific information about
the individual sources observed by the HST instruments at dif-
ferent epochs. The HSC is naturally divided into groups of
sources detected on overlapping HST images (Whitmore et al.
2016). Each group was assigned a unique GroupID identifier.
Within the group, observations of the same source are identified
and combined into a “matched source” to which another unique
identifier is attached (MatchID). The observations of a matched
source, hereafter simply mentioned as “a source”, over all avail-
able epochs form the input to the HCV pipeline.

The HCV catalog is generated by a pipeline that consists of
the following stages of operation:

– importing and organizing the HSC data in a form that facili-
tates processing for variability detection,

– detection of candidates for variability, after applying specific
limits on the data quality and quantity, rejecting inappropri-
ate sources within a group and even groups (see Section 6.2),

– validation of the detected candidates using an automated al-
gorithm,

– extraction of source and variability index (Sec. 1.2) data
for all the processed sources (candidate variables and non-
variables),

– curation of candidate variable sources and expert validation,
– publication of the resulting catalog datasets into publicly

available science archives, specifically, the ESA Hubble Sci-
ence Archive, eHST (ESAC), and the Mikulski Archive for
Space Telescopes, MAST (STScI).

In the following subsections we describe the (largely con-
figurable) components of the HCV system, which supports this
computationally intensive process and forms a pipeline of dis-
tinct data fetching, processing, and depositing.

2.1. System concept

The HCV system, at the highest level, consists of three
functional sub-systems: (a) DPP, the data processing pipeline
(hcv.dpp), which deals with the computational requirements of
the system, employing distributed infrastructure for processing
and data storage; (b) CAT, the (mostly) relational data driven
HCV catalog sub-system (hcv.cat) where typical expert driven
data management and curation operations are performed; (c) an
interface to specific science archives (hcv.bridge). Further-
more, there is a fourth enabling element, the infrastructure
(hcv.infra) that manages the security and access, monitoring,
logging, and other non-functional aspects of the system. The top-
level architecture of the system is illustrated in Figure 2 and the
major elements of the HCV system and their functions are listed
in Table 2.

The data processing pipeline (hcv.dpp) hosts the computa-
tionally and data intensive processes of the HCV system. It uti-
lizes high performance distributed processing and storage tech-
nologies and employs highly configurable algorithms for its op-
erations, which may be fine-tuned or even replaced to fit future
needs of the HCV system. Its elements are:
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Fig. 2. HCV system high-level architecture, showing three major components (dpp, cat, bridge) and their elements. These components correspond
to the top-level functional subsystems of the HCV system.

Table 2. HCV system functional components.

HCV component Function
hcv.dpp data processing pipeline
hcv.dpp.harvester interface to the HSC archive tables
hcv.dpp.detection detection of variables
hcv.dpp.validation validation of candidate variables
hcb.dpp.publisher publication of source data to catalog
hcv.cat HCV catalog subsystem
hcv.cat.service HCV database service layer
hcv.cat.ui HCV expert tools for curation
hcv.bridge system interfaces to external archives
hcv.bridge.mast STScI archive component
hcv.bridge.ehst ESAC archive component
hcv.infra infrastructure enabling layer
hcv.infra.management infrastructure management tools
hcv.infra.monitoring operation monitoring subsystems
hcv.infra.logging logging subsystem
hcv.infra.security authentication / authorization

– hcv.dpp.harvester - enables access to the external HSC
archive.

– hcv.dpp.detection - applies the variability detection algo-
rithm, estimates parameters that characterize variability (i.e.,
variability indices), and identifies candidate variables.

– hcv.dpp.validation - provides tools to analyze and verify
and/or validate the variable candidates. It applies the vari-
ability validation algorithm and validates candidates as vari-
able sources.

– hcv.dpp.publisher - ingests the outcome of processed data
into the HCV relational database.

The objective of the harvester is to retrieve sources and their
metadata from the HSC database and transform those data into a
form efficient for further processing, according to the require-
ments of the HCV data model. The harvester utilizes a com-
pressed, columnar data format and parallel processing of the
HSC data. In order to save space, the harvester may opt to com-
pletely omit specific portions of the HSC (e.g., single epoch ob-
servations). A significant feature of the harvester is its configura-
bility to adapt to changes in HSC data structures.

The detection and validation elements implement the data
processing pipeline. Initially, the extremely large groups are split
into a number of clusters (hereafter referred to also as "sub-
groups"), based on source coordinates. The sources that are
nearby on the sky tend to be assigned to the same cluster. This
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clustering procedure is based on the k-nearest neighbors algo-
rithm (k-NN) and is necessary to satisfy the CPU requirements
of the core algorithms, and enable sufficient parallelization of
the process, as the element of work is the cluster, which may
be an entire HSC group (GroupID). Next, the HSC photome-
try is preprocessed (see Section 3) in order to remove unreliable
measurements and apply local zero-point corrections. The light
curves are constructed by retrieving the (corrected) photomet-
ric measurements obtained with the same instrument and filter
combination at different epochs for all sources in each subgroup.
The pipeline then computes the magnitude scatter in each light
curve, the variability indices, and applies a magnitude-dependent
threshold to select candidate variable sources (Section 4). Fi-
nally, it applies an automated validation algorithm to the can-
didate variables in order to remove obvious false-detections (see
Section 5).

The last step of the pipeline, the publisher, implements a
Representational State Transfer (REST) web service interface.
It ingests all data delivered by the detection and validation com-
ponents into the HCV database, that is each and every candidate
and non-candidate variable source processed. This dataset is the
HCV catalog.

The catalog sub-system (hcv.cat) is a typical web application
component that enables inspection and validation of the outcome
of the pipeline. It is based on fundamentally different technolo-
gies and employs a relational database management system to
contain its data structures. It consists of two elements:

– hcv.cat.service - provides a REST web service abstraction
layer over the HCV database, covering all functionality for
data management, such as create-read-update-delete opera-
tions, data publication, and authentication/authorization.

– hcv.cat.ui - offers a tool for highly streamlined expert-driven
data validation of the catalog data.

The last subsystem of the HCV system, the hcv.bridge, pro-
vides the external science archives with access to the publishable
release of the HCV catalog. The latter is exported via the bridge
adapters in a fixed open format, JSON (JavaScript Object Nota-
tion), utilized by the targeted archives.

Furthermore, additional tools are provided to facilitate data
inspection and handling, which are particularly useful during al-
gorithm fine-tuning and exploration of the HSC. One of the tools
utilizes the temporary outputs of the pipeline supporting the al-
gorithm validation and configuration phase. The tool allows ex-
perts to inspect the light curves and other information available
for the candidate variables in order to identify issues prior to
producing the catalog, as well as to evaluate the success of the
pipeline. The second tool operates on the data imported from
the pipeline to the database allowing for validation by experts,
which is optional. It enables fine grained manipulation, updating
of a particular dataset, freezing and/or publishing the catalog and
exporting it in native format.

2.2. Implementation technologies

The main driver behind our choice of technologies for the HCV
system implementation was the large amount of input, interme-
diate and output data (see Table 3), and, correspondingly, the
large-scale data processing. An additional driver was the nature
of the source processing. Although there is a discrete sequence
of steps, that is HSC ingestion, variable candidate detection and
validation, publication to the catalog, and catalog operations,
there are processes within most of these steps that can run in
parallel. This is because either these sub-stages are independent

or because one set of data can be processed independently of an-
other (groups or subgroups). The portability of the system was
important in order to allow different infrastructures to be devel-
oped and deployed, as well as to avoid “vendor lock-in”. The
ability of the system to utilize resources that are offered to it
(e.g., CPU and RAM) is the cornerstone of the scalable design
and technologies implemented for the HCV system.

Essentially the whole HCV system relies on Free Open
Source Software (FOSS). The following list presents the most
essential elements:

– Linux is the operating system of the infrastructure, provid-
ing many of the baseline services required for operating the
infrastructure.

– Hadoop Distributed File System (HDFS) is the distributed,
high-throughput file system employed for storing the non-
relational data of the system.

– Apache Spark is the distributed parallel processing platform,
which allows the system to carry out its computationally in-
tensive tasks exploiting all resources provided to it. Apart
from implementation of Spark-enabled algorithms, DPP uses
specific Machine Learning elements (clustering) provided in
the Spark ecosystem.

– Mesos is the hardware abstraction layer over which Apache
Spark operates.

– Apache ZooKeeper is utilized for centralized configuration
management and synchronization of services of the system.

– Apache Parquet is the columnar format employed over
HDFS to provide storage and access features for DPP pro-
cesses.

– PostgreSQL is the relational database management system
that hosts the HCV catalog data component.

– Java is the platform for the implementation of the compo-
nents of the system supported by several Java ecosystem
technologies such as Hibernate, Spring Framework, Tomcat
etc.

2.3. Deployment and performance

The system is deployed on a virtualized Intel x64 architecture,
yet there are no particular dependencies on this architecture. It
has been successfully operated over XEN, VMware, and Hyper-V
hypervisors.

In operational deployment at STScI, the HCV pipeline is
provided with four worker nodes, each consisting of 16 virtual
cores and 64 GB RAM, and shared HDFS storage of over 10
TB. Those can be easily up-scaled to larger numbers if required.
Two additional nodes, one consisting of four virtual cores and
16 GB RAM, the other of eight nodes and 32 GB memory, are
dedicated, respectively, to (a) operation of the infrastructure and
several enabling components, such as the code repository and
(b) the hosting of the hcv.cat and hcv.bridge subsystems for the
handling and publication of the catalog of variables.

Over this infrastructure, the processing of the HSC v3 was
carried out. Performance data are presented in Table 3; the total
duration of the run is about ten days. We note that the processing
times in Table 3 are indicative, as they heavily depend on net-
work and VM load and have been observed to deviate by more
than 100% during peak hours.

3. HSC photometry preprocessing

The task of identifying variability in a photometric light curve
requires a reliable and clean dataset. As HST is not a survey
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Table 3. Performance of the HCV system processes in operational de-
ployment at STScI.

Process Product Type Size Duration
Download HSC tables CSV-files 1.9 TB 12h 45m
Harvesting HCV tables parquet 700 GB 02h 48m
Input HCV input parquet 38 GB 00h 20m
Clustering HCV input parquet 38 GB 02h 47m
Det.&Valid. DPP output JSON 80 GB 17h 40m
Import DB CAT dataset SQL 80 GB 7 days
Export CAT HCV export JSON 0.5 GB 00h 15m

telescope, it performs observations that are specifically designed
for each individual project, using diverse filters, exposure times,
pointings, and dithering patterns. Consequently, the uniform re-
duction and photometry provided by the HSC cannot address
issues specific to certain datasets as well as a tailored reduction
of each dataset. It can thus, inadvertently, introduce systematic
effects in the photometry. Furthermore, cosmic ray hits, mea-
surements near the edge of the CCD or in a region with nebulos-
ity etc. can also introduce systematic effects. Therefore, before
proceeding with the variability search described in Section 4,
we apply quality cuts and additional photometric corrections to
the input HSC data. The procedure described below was devel-
oped from a comprehensive investigation of the “Control Sam-
ple” fields (see Section 6) and numerous randomly selected fields
from different instruments, initially with data from the HSC v1,
and subsequently with data from the HSC v2 and HSC v3, as the
new releases became available. The procedure was eventually
applied to the whole HSC v3.

3.1. Light curve data collection

We adopted the following procedure to construct light curves of
HSC v3 sources. We used the HSC parameter GroupID, which
indicates a group of overlapping white-light images (correspond-
ing to Level 2 "detection" images of the HLA), to select observa-
tions of sources in a specific field. We consider only the groups
that have at least 300 detected sources (Nsources ≥ 300) and only
the sources that have at least five detections (nLC ≥ 5) with
the same instrument and filter combination. These constraints
should ensure the reliable operation of the variability detection
algorithm described in Section 4. We also applied cuts on the fol-
lowing HSC parameters (for a detailed description see Whitmore
et al. 2016):

– The Concentration Index (CI), defined as the difference be-
tween the source magnitude measured in two concentric
apertures (see aperture sizes in Table 1 of Whitmore et al.
2016), was limited to CI = MagAper1-MagAper2 < 5.0.
The CI is a measure of the spatial extension of a source
and can be used to identify sources potentially affected by
light from their neighbors (blending, diffraction spikes from
bright stars, a diffuse background) or cosmic rays. Typically,
real extended sources have CI ≈ 2− 4 mag, while larger val-
ues of CI usually indicate problematic photometry or image
artifacts.

– Magnitude cuts of MagAper2 < 31.0 and MagAuto <
35.0 mag were used to remove unphysical measurements.

– The photometric error MagerrAper2 estimated by
SExtractor, which provides a lower limit on the total
photometric uncertainty, was used to eliminate uncertain
measurements by adopting MagerrAper2 ≤ 0.2 mag. This

value is a conservative, typical error adopted from the faint
end of the magnitude.

– SExtractor and HSC flags were constrained to
SE_flags ≤ 7 and Flags < 4, respectively, to ex-
clude objects flagged as truncated, incomplete/corrupted,
or saturated. We cannot rely on the SExtractor saturation
flag, as the CCD saturation limit is not always propagated
properly to the white-light images.

– Sources with undefined (null) values of the above parameters
were also rejected.

After applying all the quality cuts described above, light curves
from the same instrument and filter combination were con-
structed for each source, which is identified by its unique
MatchID in the HSC catalog.

3.2. Light curve filtering and outlier identification

During the construction of the HCV pipeline, we identified sev-
eral issues with the HSC photometry including misalignment be-
tween images in a visit stack, background estimation problems
resulting in corrupted photometry of sources close to the image
edges (“edge effect”), issues regarding local correction, satura-
tion, double detection, and so on. Several of these were corrected
or improved in the HSC v3, although some continue to affect
the HSC photometry and therefore the HCV catalog (see Sec-
tion 6.2). Additional light curve filtering was therefore required
to reduce the false detection rate of candidate variables.

The filtering performed during the preprocessing included
the following main steps: identification and flagging of photo-
metric outliers, identification and rejection of “bad” images that
produce many photometric outliers, local magnitude zero-point
correction, and identification and rejection of additional unreli-
able data points that have large synthetic errors (defined below).
Four parameters were used to evaluate the quality of the HSC
photometry:
1. MagerrAper2.
2. CI.
3. The offset distance D of a source from its average position

listed in the catalog (“match position”), as an uncleaned cos-
mic ray or misalignment between images in the white-light
stack will change the center of light (pixel-flux-weighted po-
sition of the source) and corrupt its photometry.

4. The difference between the source magnitude measured
using the circular (MagAper2) and the elliptical aperture
(MagAuto9), MagAper2-MagAuto. This difference is ex-
pected to be constant for isolated sources. For a close pair
of sources that were not resolved by SExtractor, the ellip-
tical aperture may include both sources, while the circular
aperture may include only one.

We assigned a weight to each light curve point that is in-
versely proportional to the square of the quantity we defined as
the “synthetic error”:

Errorsyn =

√√√√√√√√√√√√√√√√√√√√√√√√√

(
MagerrAper2

< MagerrAper2 >

)2

+

( CI

< CI >

)2
+

( D
< D >

)2

+

(
MagAper2 − MagAuto

< MagAper2 − MagAuto >

)2

, (1)

9 See the description of automatic aperture magnitudes in SExtractor
User’s manual at https://www.astromatic.net/software/
sextractor
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where <X> indicates the median value of each parameter of the
light curve. When parameters were not available (which most
commonly occurs when a flux in one of the apertures is neg-
ative), they were set to zero. The synthetic error was used to
identify data points that differ from the rest of the measurements
for each object. In principle, the synthetic error could be used on
its own to identify bad measurements. However, due to the im-
age misalignment problem and uncertainties of the parameters
(which may result in some outliers with normal synthetic error),
the synthetic error had to be combined with additional outlier-
rejection steps.

A weighted robust linear fit (Press et al. 2002) was performed
for each light curve, using the synthetic error to set relative
weights of the light curve points instead of the photometric er-
ror. The fit was used to obtain the scatter of measurements, the
robust sigma (σ′; a resistant estimate of the dispersion of a distri-
bution, which is identical to the standard deviation for an uncon-
taminated distribution), around the best-fit line and mark outlier
points deviating by more than 3σ′ from that line. The “potential
outliers”, with magnitude measurements within 3σ′ but having
their synthetic error > 4σsyn were also marked at this step. The
σsyn was calculated in a similar way to σ′, but instead of using
a linear fit, the median value was adopted, since the components
are expected to be constant and to be measured in the same way,
unless external contaminating factors exist.

By comparing the light curves of all sources in a given sub-
group, we identified visit-combined images having > 20% of
their sources marked as outliers. These visits were marked as
“bad” and all measurements obtained during these visits (not
only the ones marked as outliers) were considered unreliable and
discarded from the analysis. This was found to be a very efficient
way of identifying corrupted images. Once the bad visits were
removed from the dataset, the robust linear fit was repeated as
the removal of a bad visit may have changed the σ′ values.

The magnitudes predicted by the robust linear fit for each
visit were used to compute the local zero-point corrections (e.g.
Nascimbeni et al. 2014). For each source we used other HSC
sources within a radius of 20′′ around it to compute the cor-
rection. For each visit we calculated the magnitude zero-point
correction for a given source as the median difference between
magnitudes predicted by the linear fit and the ones measured for
the nearby sources that have measurements in the same visit that
are not marked as outliers or potential outliers (i.e., having <3σ′
and <4σsyn). This correction should be able to eliminate the pho-
tometric zero-point variations from image to image and from one
area of the chip to the other (as long as the spatial variation of the
zero-point is sufficiently smooth), and also the effects of thermal
breathing of the telescope, changing of PSF, for which the total
flux difference from visit to visit can reach up to ∼6% (Anderson
& Bedin 2017). It may also partly compensate for any residual
charge transfer inefficiencies (Israel et al. 2015) that remain after
the corrections that were applied at the image processing stage.

After the local correction was applied, the robust linear fit
was performed again as the local correction (just as the bad visit
removal above) may change the σ′ values. We flagged all the
outliers and potential outliers in all light curves and discarded
them from further analysis in order to reduce the rate of false de-
tections among the candidate variables. While application of the
local zero-point correction considerably improved light curve
quality, the procedure cannot correct the extreme outliers. These
outlier measurements are associated with poor quality images
and with cases where photometry of an individual star, rather
than a group of nearby stars, is corrupted by an image artifact.
Figure 3 presents an example of the preprocessing procedure ap-

Fig. 3. Light curve of a source in the field of M4 (MatchID=27382770;
WFC3_F775W filter), demonstrating the application of the preprocess-
ing procedure. The figure shows the original light curve retrieved from
the HSC (top), the local-corrected light curve (middle), and the final
cleaned light curve (bottom). For clarity, the light curves are offset by
0.2 mag. In each step of the procedure, the outliers (>3σ′; red circles)
and potential outliers (<3σ′ and >4σsyn; blue squares) are marked. Out-
liers that also have a large synthetic error (>4σsyn) are marked by green
diamonds.

plied to a light curve in M4. We note that the outliers were re-
moved by the preprocessing in an iterative process. Also, the
systematic offset between different visits was removed, which
reduced the light curve scatter.

The data preprocessing techniques used for the production
of the HCV catalog can be applied to any other time-domain
survey, following a careful evaluation of the dataset. Remaining
issues, which correspond to limitations and caveats of the HCV
catalog, are described in Section 6.2.

4. Algorithm for detecting candidate variables

Our goal is to recover all variable objects that can in principle
be recovered from each dataset in the HSC v3. The efficiency of
the HCV pipeline in finding variable objects should be limited
by the input data, not by the processing algorithm.

We require a general-purpose variability detection algorithm
that is robust to individual outlier measurements, applicable to
a wide variety of observing (sampling) cadences and efficient in
detecting a broad range of variability patterns, including peri-
odic and non-periodic ones, rapidly and slowly varying objects,
and transients visible only on a small subset of images of a given
field. Taking into account the heterogeneous nature of the input
HSC v3 data, we tested various statistical indicators of variabil-
ity (“variability indices”, Section 1.2), which characterize the
overall scatter of measurements in a light curve and/or degree
of correlation between consecutive flux measurements.

Sokolovsky et al. (2017b) presented a detailed description
and comparison of 18 variability indices proposed in the litera-
ture. These indices were tested on seven diverse sets of ground-
based photometric data containing a large number of known vari-
ables. Simulated data were also used to investigate the perfor-
mance of the indices based on the number of points in a light
curve. The authors concluded that for light curves with a small
number of points, the best result is achieved with variability in-
dices quantifying scatter (such as the interquartile range and me-
dian absolute deviation). This study resulted from the develop-
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