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ABSTRACT

Using images from the Hubble Space Telescope Wide-Field Camera 3, we measure the rate of diffusion of stars
through the core of the globular cluster 47 Tucanae (47 Tuc) using a sample of young white dwarfs that were
identified in these observations. This is the first direct measurement of diffusion due to gravitational relaxation. We
find that the diffusion rate k » -10 13 arcsec2 Myr−1 is consistent with theoretical estimates of the relaxation time
in the core of 47 Tuc of about 70Myr.

Key words: globular clusters: individual (47 Tuc) – Hertzsprung–Russell and C–M diagrams – stars: kinematics
and dynamics – stars: Population II

1. INTRODUCTION

Globular clusters have long provided an amazing laboratory
for stellar evolution and gravitational dynamics, and the nearby
rich cluster, 47 Tuc (47 Tuc), has long been a focus of such
investigations. The key point of this investigation is the
interplay between these two processes. In particular, in the core
of 47 Tuc, the timescale for stellar evolution and the timescale
for dynamical relaxation are similar. The relaxation time in the
core of 47 Tuc is about 70Myr (Harris 1996). Meanwhile over
a span of about 150Myr, the most massive stars in 47 Tuc
evolve from a red giant star with a luminosity of 2000 times
that of the Sun to a white dwarf (WD) with a luminosity less
than a tenth that of the Sun. Meanwhile the star loses about
40% of its mass, going from 0.9 to 0.53 solar masses. It is these
young WDs that are the focus of this paper.

Although the core of 47 Tuc has been the focus of numerous
previous investigations (e.g., McLaughlin et al. 2006; Knigge
et al. 2008; Bergbusch & Stetson 2009), this is the first paper
that combines the near-ultraviolet filters of the Hubble Space
Telescope (HST) with a mosaic that covers the entire core of
the cluster. Probing the core of the cluster in the ultraviolet is
advantageous in several ways. First, the young WDs are
approximately as bright as the upper main-sequence, giant, and
horizontal branch stars at 225 nm, so they are easy to find. In
fact the brightest WDs are among the brightest stars in the
cluster and are as bright as the blue stragglers. Second, the
point-spread function of HST is more concentrated in the
ultraviolet helping, with confusion in the dense starfield that is
the core of 47 Tuc.

In spite of these advantages, for all but the brightest stars,
our data set suffers from incompleteness, which presents some
unique challenges. We reliably characterize the incompleteness
as a function of position and flux in the two bands of interest,
F225W and F336W, throughout the color–magnitude diagram
(CMD) and especially along the WD cooling sequence through
the injection and recovery of about 108 artificial stars into the
images. How we measure the completeness is described in
detail in Section 3.1. The young WDs typically have a mass
40% less than their progenitors, so they are born with less
kinetic energy than their neighbors, and two-body interactions

will typically increase the kinetic energy of young WDs over
time and change their spatial distribution. We introduce a
simple model for the diffusion of the young WDs through the
core of the cluster (Section 3.2). To make the most of this
unique data set, we have to include stars in our sample whose
completeness rate is well below 50%. We have developed and
tested statistical techniques to characterize the observational
distribution of young WDs in flux and space to understand their
motion through the cluster and their cooling (Sections 3.4–3.7)
in the face of these potentially strong observational biases.
Although these techniques are well-known especially in
gamma-ray astronomy, they have never been applied to stellar
populations in this way, so Section 3.8 presents a series of
Monte Carlo simulations to assess the potential biases of these
techniques and verify that these techniques are indeed unbiased
in the face of substantial incompleteness within the statistical
uncertainties. To establish the time over which the WDs dim
we use a stellar evolution model outlined in Section 3.3.
Section 4 describes the best-fitting models for the density and
flux evolution of the WDs. Section 4.1 looks at the dynamic
consequences of these results. Section 5 outlines future
directions both theoretical and observational and the broader
conclusions of this work.

2. OBSERVATIONS

A set of observations from the Advanced Camera for
Surveys (Ford et al. 1998) and the Wide Field Camera 3
(WFC3, MacKenty 2012) on the HST of the core of the
globular cluster 47 Tuc over 1 yr provides a sensitive probe of
the stellar populations in the core of this globular cluster (Cycle
12 GO-12971, PI: Richer), especially the young WDs. Here we
will focus on the observations with WFC3 in the UV filters
F225W and F336W. The observations were performed over ten
epochs from 2012 November to 2013 September. Each of the
exposures in F225W was 1080 s, and the exposures in F336W
were slightly longer at 1205 s. Each of the overlapping WFC3
images was registered onto the same reference frame and
drizzled to form a single image in each band from which stars
were detected and characterized, resulting in the CMD depicted
in Figure 1.

The Astrophysical Journal, 804:53 (11pp), 2015 May 1 doi:10.1088/0004-637X/804/1/53
© 2015. The American Astronomical Society. All rights reserved.

1

mailto:heyl@phas.ubc.ca
mailto:heyl@phas.ubc.ca
mailto:heyl@phas.ubc.ca
mailto:richer@astro.ubc.ca
mailto:richer@astro.ubc.ca
mailto:richer@astro.ubc.ca
mailto:jkalirai@stsci.edu
http://dx.doi.org/10.1088/0004-637X/804/1/53


What is immediately striking in Figure 1 is that the
distribution of young WDs with a median age of 6Myr is
significantly more centrally concentrated than that of the older
WDs that have a median age of 127Myr. The WD distribution
appears to become more radially diffuse with increasing age, a
signature of relaxation. One concern is immediately apparent.
The numbers of observed stars are given in the legend of the
left panel and the numbers of stars in the completeness
corrected samples are given in the legend of the right panel.
The sample of older WDs is only about 75% complete on
average. Furthermore, one would expect the completeness of
these faint stars to be lower near the center of the cluster, so if
the completeness is not accounted for correctly, one could
naturally conclude that the WDs are diffusing when in reality
they are not. In principle we would like to divide this sample of
over 1,300 stars into subsamples, some of which will have even
smaller completeness rates. How can we be sure that our
analysis techniques are up to the task of measuring this
diffusion accurately in the face of completeness rates as low as
20% that vary dramatically with distance from the center of the
cluster?

In Section 3 we will characterize the completeness rate
through artificial star tests, and develop and test statistical
techniques to measure the diffusion of WDs in 47 Tuc
without binning the stars at all, thus preserving the maximum
information content of these data. We will test these new
algorithms on mock data sets that include both the
completeness rate and flux error distribution of our sample
to verify that they robustly determine the diffusion and flux
evolution of the WDs. The subsequent section (Section 4)

explores results of these techniques on the data set depicted
in Figure 1.

3. ANALYSIS

3.1. Artificial Star Tests

We inserted ~108 artificial stars into the WFC3 images in
F225W and F336W over the full range of observed magnitudes
in both bands and a range of distances from the center of the
cluster. To determine the completeness rate for the WDs that
we have observed, we inserted artificial stars whose F225W
and F336W magnitudes lie along the observed WD track in the
CMD. The rate of recovering a star along the WD track of a
given input magnitude in F336W at a given radius is the
completeness rate and is depicted in Figure 2. If an artificial star
along the WD track is detected in F336W, it is always detected
in F225W as well. The completeness rate is both a strong
function of radius and magnitude and is significantly different
from unity except for the brightest stars, so accounting for
completeness robustly is crucial in the subsequent analysis. The
radial bins are 100 pixels in width and the magnitude bins are
0.1358 wide.
The magnitudes of the recovered stars give the error

distribution as a function of the input magnitude and position
of the star in the field. Furthermore, these distributions are not
typically normal and often asymmetric as well. For the analysis
in Section 3.5 we use the cumulative distribution of magnitude
errors as a function of position and input magnitude, which we
obtain by sorting the output magnitudes in a given bin and
spline to obtain the cumulative distribution in the form of the

Figure 1. Left: color–magnitude diagram of the core of 47 Tuc in the WFC3 filters F225W and F336W. Right: the radial distribution of young and old white dwarf
stars as highlighted in the color–magnitude diagram (completeness corrected numbers appear in the right panel).
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values of the errors from the first to the ninety-ninth percentile.
In the analysis the completeness rate is interpolated over the
two dimensions of radius and magnitude with a third-degree
spline, and the error distributions are interpolated linearly over
the three dimensions (radius, magnitude, and percentile).

3.2. Diffusion and Luminosity Evolution

Sometime during the late evolution of a turn-off star in
47 Tuc, the star loses about 40% of its mass, going from a
main-sequence star of 90% of a solar mass to a WD of 53% of a
solar mass (Renzini & Fusi Pecci 1988; Renzini et al. 1996;
Moehler et al. 2004; Kalirai et al. 2009). These newborn WDs
will have the typical velocities of their more massive
progenitors, so as they interact gravitationally with other stars,
their velocities will increase through two-body relaxation,
bringing their kinetic energies into equipartition (e.g., Spit-
zer 1987). Because the gravitational interaction is long-range
and the distance between the stars is small compared to the size
of the cluster, the change in velocity will be dominated by
distant interactions and small random velocity jumps, i.e., the
Coulomb logarithm is large, ~ Nln , where N is the number of
stars in the core of the cluster, ~ -105 6. These small jumps in
velocity can be modeled as a random walk in velocity so the
square of the velocity increases linearly in time and the

relaxation time can be defined as = é
ëê

ù
ûú
-

t d v dtln .r
2 1

In the
center of the cluster, the density of stars is approximately
constant, so the gravitational potential has the approximate
form
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so the square of the distance of the WDs from the center of the
cluster will also increase linearly with time as a random walk;
therefore, let us suppose that newly born WDs diffuse outward
through the cluster following the diffusion equation
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if κ is independent of time and position. This gives a
cumulative distribution in projected radius
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The Green’s function at t = 0 is a delta function centered on the
center of the cluster. On the other hand, if the initial distribution
is a Gaussian centered on the center of the cluster the density of
WD stars near the center of the cluster is a function of age, t,
and projected radius, R, of the form
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where the density distribution is normalized as

ò r =
¥

R t dR( , ) 1. (7)
0

The dispersion of the Gaussian at t = 0 is simply given by
s k= t2 42

0. Because the diffusion equation is linear, a sum of
several Gaussians with the same value of κ but different
normalizations and values of t0 will also be a solution.
Of course we do not directly observe the ages of the WDs.

Rather we observe their fluxes or apparent magnitudes. The
cooling curve of the WDs is a relationship between time and
the apparent magnitude from the WDs t(m), so the number of
WDs that we expect to observe at a given flux and radius is
given by

r=
¶
¶

f R m N R t m
t

m
C R m( , ) ˙ ( , ( )) ( , ), (8)

where Ṅ is the birthrate of the WDs (assumed to be constant
over the range of ages of the young WDs, i.e., the past
200Myr) and C R m( , ) is the completeness as a function of
radius and flux. To this point flux errors have been neglected.

3.3. Cooling Models

To construct the various cooling models here, i.e., t(m) from
Equation (8), we used Modules for Experiments in Stellar
Astrophysics (MESA; Paxton et al. 2011) to perform
simulations of stellar evolution starting with a pre-main-
sequence model of 0.9 solar masses and a metallicity of
= ´ -Z 3.3 10 3 appropriate for the cluster 47 Tuc. This is

slightly larger than the value for the turnoff mass found by
Thompson et al. (2010) for the eclipsing binary V69 in 47 Tuc
that is composed of an upper main sequence star of about 0.86
solar masses and a subgiant of 0.88 solar masses. Because we
are interested in the stars that have become young WDs just
recently, the initial masses of these stars should be slightly
larger than the turnoff mass today. We have explicitly assumed
that the progenitors of the WDs are a uniform population.
Although there is evidence of modest variation in the chemical
abundances in 47 Tuc (e.g., Milone et al. 2012), the WD
cooling sequence, at least at larger radii, appears uniform
(Richer et al. 2013). However, from Figure 1 it is apparent that

Figure 2. Completeness rate as a function of radius from the center of 47 Tuc
and the magnitude of the artificial star.
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the core of 47 Tuc has a substantial population of blue
stragglers that will evolve to become more massive WDs. Our
sample has about 160 blue stragglers, and if we estimate the
duration of the main-sequence for a blue straggler to be
1–2 Gyr (e.g., Sills et al. 2009), we obtain a birth-rate of blue-
straggler WDs of about 0.1 Myr−1. The number of giants in our
field indicates a birth rate of about eight WDs per million years
(see Goldsbury et al. 2012 for further details), so the estimated
contamination of the WD cooling sequence is modest at
about 1%.

Specifically, we used SVN revision 5456 of MESA and
started with the model 1 M_pre_ms_to_wd in the test
suite. We changed the parameters initial_mass and
initial_z of the star and adjusted the parameter
log_L_lower_limit to −6 so the simulation would run
well into the WD cooling regime. We also reduced the two
values of the wind η to 0.46 (from the default of 0.7) to yield a
0.53 solar mass WD from the 0.9 solar mass progenitor.
Interestingly Miglio et al. (2012) argue from Kepler aster-
oseismic measurements of the stars in the metal-rich open
cluster NGC 6971 that such values of η are needed to account
for the mass loss between the red giant and red clump phases of
stars in this metal-rich cluster.

We defined the time of birth of the WD to coincide with the
peak luminosity of the model at the tip of the asymptotic giant
branch about 10.9 Gyr after the start of the simulation. This is
in agreement with the best age of the cluster determined from
main-sequence stars of 11.25± 0.21 (random) ±0.85 (sys-
tematic) Gyr (Thompson et al. 2010). This age agrees with that
derived by Hansen et al. (2013) from WD cooling
(9.9± 0.7 Gyr at 95% confidence). We choose this definition
of the birth so that each observed WD will have a star of similar
luminosity in the cooling model. At this point in the evolution
we have outputs from the MESA evolution every 100 yr or so;
therefore, the cooling curve is well-sampled throughout. At
each output time we have the value of the luminosity, radius,
effective temperature, and mass of the star. With these values
we interpolate the spectral models of Tremblay et al. (2011) in
surface gravity and effective temperature, and then scale the
result to the radius of the model star. We use a true distance
modulus of 13.23 (Thompson et al. 2010) and a reddening of

- =E B V( ) 0.04 (Salaris et al. 2007) to determine the model
fluxes in the WFC3 band F336W. We used the standard
extinction curve of Fitzpatrick (1999) with

- =A E B V( ) 3.1V . We have purposefully used a distance
and reddening determined from main-sequence stars to avoid a
potential circularity in using the WD models themselves to fix
the distance. Woodley et al. (2012) inferred a slightly larger
true distance modulus of  13.36 0.02 0.06 from the WD
spectral energy distributions.

The brightest WD in our sample has F336W = 14.92.
According to the models this corresponds to an age of
110,000 yr, an effective temperature of 100,000 K, a luminosity
of 1600 Le, and a radius of 0.13 Re. Its mass is 0.53 solar
masses. The faintest WD in our sample has F336W = 25.4,
yielding an age of 1.2 Gyr, an effective temperature of 8700 K,
a luminosity of 10−3 Le, and a radius of 0.013 Re, one-tenth of
the radius of the brightest WD. Clearly the brightest WD in our
sample is not a WD in the usual sense because thermal energy
plays an important role in the pressure balance of the star. For
this brightest star =glog 5.93, which is less than the minimum
of the atmosphere model grid ( =glog 6) so we have to

extrapolate slightly off of the grid, but only for this brightest
star. For the simulations in Section 3.8 we did not use this
particular model, but similar ones of the same WD mass with
different neutrino cooling rates or initial metallicities also
generated with MESA.

3.4. Likelihood Function

The model outlined in Section 3.2 predicts the number of
WDs as a function of magnitude and position. Let us divide the
space of position and magnitude into bins of widthDR andDm
where the bins are numbered with indices j and k, respectively.
The probability of finding n stars in a particular bin is given by

=
é
ëê D D ù

ûú
- D D

( )( )
( ) ( )

P n f R m

f R m R m e

n

; ,

,

!
. (9)

j k
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n f R m R m,j k

Now we imagine dividing the sample into so many bins that
there is either a single star in a bin or no stars at all; we have

=
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j k
f R m R m
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We can define the likelihood as the logarithm of the product of
the probabilities of observing the number of stars in each bin.
Since the bins are so small we can replace Rj and mk for the
bins with stars in them with the measured values for that
particular star Ri and mi. This gives the so-called “unbinned
likelihood” of observing the sample as follows (Cash 1979;
Mattox et al. 1996; Davis 2014):

å å= - D D( )( )L f R m f R m R mlog log , , . (11)
i

i i
j k

j k
,

We have dropped the constant widths of the bins from the first
term, which is a sum over the observed stars; consequently, the
absolute value of the likelihood is not important, just
differences matter. The second term is a sum over the really
narrow (and arbitrary) bins that we have defined, so we have

òå D D = =( ) ( )f R m R m f R m dRdm N, , , (12)
j k

j k j k
,

pred

where Npred is the number of stars that the model predicts that
we will observe, so finally we have

å= -( )L f R m Nlog log , , (13)
i

i i pred

where the summation is over the observed stars. The integral
for Npred when combined with Equation (8) yields

ò ò r=N N R t C R m dRdt˙ ( , ) ( , ) (14)
t r

pred
0 0

1 max

or

ò ò r=N N R t C R m
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dm
dRdm˙ ( , ) ( , ) . (15)

m

m r
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If we take the luminosity function as fixed and try to maximize
the likelihood with respect to the diffusion model

å r=
é
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ê
ê

¶
¶
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ú
ú -( ) ( )L N R t m
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m
C R m Nlog log ˙ , ( ) , (16)

i
i
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log , , (17)
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i
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where the second summation does not depend on the diffusion
model, so it is constant with respect to changes in the diffusion
model and can be dropped from the logarithm of the likelihood.
However, it must be included if one wants to compare different
cooling curves, t(m).

3.5. Magnitude Errors

An important complication to the analysis is that the
measured magnitudes are not the same as the actual magnitudes
of the stars; in particular the error distribution is not normal or
even symmetric. This transforms the model distribution
function via a convolution,

ò¢ = ¢ ¢ - ¢ ¢
-¥

¥
f R m f R m g R m m m dm( , ) ( , ) ( , , ) (18)
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òD = - D D ¢ D ¢
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D
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m

is the cumulative distribution of magnitude errors with the
observed radius and magnitude fixed. If we calculate the
percentiles of the magnitude error distribution as Dm j we can
approximate the integral as the sum

å¢ = - D( )f R m f R m m( , )
1
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, , (21)
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so for a given star i we have
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where ¢ = ¶ ¶t t m. This new function ¢f R m( , )i i can be
substituted into Equation (13) to yield a likelihood including
the magnitude errors. We will assume that the magnitude errors
do not affect our estimate of Npred; this simplifies the analysis.
We will verify our technique with Monte Carlo simulations in
Section 3.8.

3.6. Constraining the Luminosity Function

We can construct a maximum likelihood estimator of the
luminosity function of the WDs or alternatively the cooling

curve as follows

r= =
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m
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where i is an index that runs over the observed stars. With this
model we can define a likelihood function for the stars that we
observe
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where a multiplicative constant (infinite in this case) and the
completeness for each star have been dropped from the
logarithm.
Substituting the trial luminosity function Equation (23)
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Taking the derivative of Npred yields the second part of the
variance in Llog ,
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Combining these results with ¶ ¶ =L Alog 0k yields an
equation of the form
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Although this matrix equation has as many rows as there are
stars in the sample, it is straightforward to solve at least
formally in two ways. The first is

=
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The values of bi and Mi depend on the values of Ai through the
parameter tk, so the solution must proceed iteratively while
minimizing with respect to the other parameters of the model κ
and t0.

For each value of the diffusion parameters, we chose to
iterate Equation (38) three times to determine the values of Ak

within a loop of two iterations whereMi (Equation (36)) and bk
(Equation (37)) vary. Given this new trial luminosity function,
the diffusion parameters are varied to find the maximum
likelihood, and the iterative solution of the luminosity function
is repeated. These two steps are repeated until the values of the
diffusion parameters from one iteration to the next have
changed by less than one part per hundred.

An interesting limit is when the density distribution is
independent of time. This understandably yields a simpler

solution for Ai. In particular, Mi = 0 so
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where the underlying density distribution is normalized. The
weight is not the reciprocal of the completeness for star i but
rather the reciprocal of the mean of the completeness of a star
with the flux of star i over the density distribution. The latter
could be evaluated by taking the mean of the completeness
measured for all the stars in the sample in a magnitude range
about star i sufficiently wide to sample the density distribution.
It is important to note that the weight is the reciprocal of the
mean of the completeness not the mean of the reciprocal. If the
completeness does not depend strongly on radius, these two
will approximately coincide. Finally if the density distribution
is not known a priori and is not modeled, the weight for a

particular star is simply given by = -[ ]A C R m( , )i i i
1. We call

this “Inv Comp” in Figures 6 and 10.
The likelihood is invariant under changes in the birth rate of

the WDs (Ṅ ) if one also changes the values of k A, i and t0 as
follows:

a a a k ak   - -N N A A t t˙ ˙ , , and . (41)i i
1

0
1

0

That is, the timescale cannot be fixed without some additional
input such as a theoretical cooling curve or an independent
estimate of the WD birthrate. The quantities A Ṅi , k Ṅ , and Nt˙ 0

are invariant with respect to this transformation. In our data set
when we use this modeling technique, we fix the value of Ṅ to
the value inferred by the number of giants in our field as in
Goldsbury et al. (2012).

3.7. Constraining the Luminosity Function with Errors

We start the analysis including magnitude errors with
Equations (18) and (24), which when combined yield
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With this model we can define a likelihood function for the
stars that we observe
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Note how the magnitude error essentially translates into a
spread in the age of the observed stars
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Although we have included this additional complication in the
derivations for completeness, we have found that the inclusion
of error convolution in modeling simulated data does not affect
the fitting results, so we did not include this in the modeling of
the dynamics while simultaneously determining the luminosity
functions.

3.8. Monte Carlo Simulations

To test these techniques in the face of the challenges of
incompleteness and magnitude errors present in our data, we
typically simulated on the order of 10,000 catalogs of the same
size as our data set with a known luminosity function and a
known diffusion model and attempted to recover the input
parameters. In both cases, the age of the star is first selected to
be between zero and 1.5 Gyr. Given this age the model cooling
curve determines the F336W magnitude. Second, a radius is
selected from the cumulative distribution in projected radius
(Equation (5)). Given the radius and magnitude of the
candidate for the catalog, the completeness for this star is
calculated and the star is included in the sample with this
probability. Finally, the magnitude errors are applied by
drawing from the magnitude error distribution. We created a
sample of 3167 stars—the same as in the WFC3 WD sample.
The fitting procedure followed two different strategies.

The first was to assume a fixed cooling curve and try to find
the density evolution to determine whether the process is biased
in determining the diffusion parameters and the typical errors.
Finally, we performed simulations where we did not convolve
the models with the error distribution to calculate the likelihood
(in all cases errors were applied to the simulated data) to see
whether the omission of this step introduced biases. The second
strategy did not assume a cooling curve and determined the
cooling curve as a part of the process of determining the
diffusion. We did not convolve the cooling curve with the error
distribution while fitting the model; however, the fake catalogs
were created in the same way as in the first strategy. In this
technique the resulting cooling curve can be multiplied by a
constant factor (Equation (41)), so we determine the values of
κ and t0 by fixing the value of Ṅ to the one used to build the
catalog. This also fixes the age estimates of all of the WDs in
the sample.

The results of these simulations are depicted in Figures 3 and
4 and in Table 1. The key results of the simulations are that the
likelihood fitting of the diffusion model results in an unbiased
estimate of the diffusion parameters regardless of whether the
fitting technique includes the magnitude errors (Section 3.5).
Furthermore, even when one fits for the luminosity function as
well one can obtain reliable estimates of the diffusion model
without prior knowledge of the cooling curve; of course, in this
latter case the timescales of the diffusion rely on an
independent estimate of the birth rate of the WDs Ṅ .
Observationally, this is determined from a sample of giant
stars numbering in the thousands (see Figure 1) so the
statistical error in this determination is small. Typically the
birth rate is recovered with an uncertainty of less than 1% and
the diffusion rate with an uncertainty of 10% and t0 with an
uncertainty of 15%. The errors in t0 and κ are correlated so the
error in kt0 is typically less than 10%.

In the second type of simulation, we found the density
evolution along with an estimate of the cooling curve, so this
cooling curve can be compared with the input cooling curve for
the simulations. Furthermore, the determination of the cooling

curve is iterative, so we have to give an initial guess of the
curve. The input, the initial guess and the results are given in
Figure 5. We can also fit for just the cooling curve and assume
that the density distribution does not evolve or not assume a
density model at all and use the per star completeness as
outlined in Section 3.6. Figure 6 highlights the difference
between the model age and the inferred age with the various
likelihood techniques. For young WDs the uncertainties are
large (because there are few young WDs in the sample), but for
old WDs there is a small bias of order of 10% in the inferred
age, the sign of which depends on the technique. Again this is
on the order of the relative errors in the diffusion parameters.

4. RESULTS

The results of the diffusion model fitting are given in
Table 2. The results do not depend strongly on the modeling
technique, especially the assumed cooling curve for the WDs.
The inferred relaxation times are also in good agreement with
the value tabulated by Harris (1996). Figure 7 shows the
posterior probability distribution for the various parameters and
how the uncertainties are correlated with each other. An
important conclusion is that the no-diffusion model (i.e.,
k = 0) is excluded at high confidence.

To find whether we could better fit the radial distribution
with a sum of Gaussians, we performed the fitting with two and
three Gaussians. We did not include the error convolution in
the fitting models. The fit with two Gaussians has a value of

Llog that is lower by 75 from a fit with a single Gaussian.
From Figure 4 we can see that this is a significantly better fit.
However, the decrease in Llog by adding a third Gaussian is
only 2; furthermore, the third Gaussian has a very low value of
Ṅ so it does not affect the resulting distributions strongly.
Table 2 shows that the diffusion parameters from the two-
Gaussian fit only differ slightly from the one-Gaussian fits. In
any case, these differences lie within the statistical errors. We
can compare the best-fitting model density distributions as a
function of time with the observed (completeness corrected)
density distributions for several age ranges of WD. The
diffusion model for the median age of the WDs in each bin is
depicted with a solid line for the one-Gaussian model and a
dot-dashed line for the two-Gaussian model. The two-Gaussian
model does a better job at following the distribution of the
WDs, especially at smaller radii.

4.1. Two-body Relaxation

Figure 8 depicts the radial distribution of WDs of various
ages. Each bin is 50Myr wide, and the bins are centered on 25,
125, and 225Myr. The evolution at up to a few core radii
(about 60 arcsec) is dramatic from 25 to 125Myr and modest
thereafter. Outside 60 arcsec the cumulative distributions are
nearly parallel indicating little evolution in this region at early
times. The simple diffusion models used here assume that the
diffusion coefficient is constant in space and in time, so the
models continue to evolve at late times and for all radii. At the
smaller radii the WDs reach the distribution corresponding to
their masses after about 100Myr and stop diffusing.
Figure 9 focuses on the outer half of the WFC3 field. Here

we see more evolution between the second and third epochs,
with little early evolution. This indicates the increase in the
relaxation time as the stellar density decreases. The WDs
diffuse modestly over the first 100Myr and more dramatically
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during the second 200Myr. The WDs as expected from
theoretical considerations suffer diffusion that is a function of
radius and time and beyond the scope of the simple model used
to quantify the diffusion in this paper. However, this model
does capture the diffusion within a few core radii for a few core
relaxation times.

5. CONCLUSIONS

5.1. Further Analysis

In this paper we used the Green’s function (Equation (4)) to
model the diffusion of the stars through the cluster. We simply
took the initial conditions to be a Gaussian or a sum of
Gaussians centered on the center of the cluster. This allowed
for a simple closed-form expression for the density function in
spherical coordinates and in projection as well. Without
relaxing the spherical symmetry one could imagine much
more general initial conditions. In fact we have an estimate of
the initial conditions in the form of the projected radial
distribution of the stars on the upper main-sequence. This
distribution could be possibly deprojected as a lowered-
isothermal distribution in phase space (Michie 1963;
King 1966) and convolved with the Gaussian Green’s function,
Equation (4), to give the expected density distribution as a
function of time. This technique shares the advantage of the
technique used in this paper that the density distribution can be
guaranteed to be positive because the convolution of the
positive kernel with a positive distribution is necessarily
positive; however, the density distribution even in spherical
coordinates is not available in closed form.

A second strategy would be to expand the initial density
distribution in terms of spherical Bessel functions and spherical
harmonics. If we restrict ourselves to an initially spherical
distribution we have

òr = k
¥

-r t dka k e
kr

kr
( , ) ( )

sin ( )
, (46)k t

0

2

where the coefficients a(k) are determined from the initial
density distribution
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Figure 3. Upper panel: the values of the fitted parameters are typically
unbiased with respect to the input values in the simulations. Here Ṅ is depicted.
The input values for the two types of simulations are given by the vertical lines.
Lower panel: the values of t0.

Figure 4. Upper panel: the values of the fitted parameters are typically
unbiased with respect to the input values in the simulations. Here κ is depicted.
The input values for the two types of simulations are given by the vertical lines.
Lower panel: the distribution of Llog is significantly wider when error
convolution is included in the fitting process.

Table 1
Parameters from the Monte Carlo Simulations: Means, Standard Derivations,

Input Values

Technique κ Input t0 Input

Full Modeling 3.4 ± 0.3 3.58 560 ± 80 531
No-error Convolution 3.7 ± 0.4 3.71 530 ± 80 515
Unfixed LF 7.5 ± 0.6 7.26 220 ± 30 231

Ṅ Input Llog

Full Modeling 5.42 ± 0.03 5.44 ±50
No-error Convolution 5.45 ± 0.03 5.45 ±22
Unfixed LF L ±20 L
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If the initial density distribution can be well represented with a
few values of k, then the density evolution is straightforward to
evolve forward and backward in time; however, it is no longer
guaranteed to be positive even at the initial time if only a range
of values of k are considered in a (k).
From the point of view of the likelihood analysis, a natural

next step would be to use the additional information available
with the current observations, i.e., the flux in the F225W band.
This would provide an additional constraint on the ages of the
WD stars or alternatively constrain the cooling curve in both
bands. In the first case one would perhaps get better constraints
on the dynamical evolution and could also fit for the distance
and reddening to the cluster, and possibly the mass of the WDs
or specifics of the cooling mechanism. In the second case one
would get a cooling curve in a second band. It is straightfor-
ward to see that the weights for the cooling curve in F225W
would be the same as in F336W, so simply plotting the inferred
ages of the WDs from Figure 10 against the F225W magnitude
would yield the cooling curve in F225W. The agreement with
the F336W model is poorer at early times, but improves with
age and lasts until nearly 1 Gyr. In the context of this paper, we
obtain similar diffusion parameters whether we fit a luminosity
function or assume a theoretical model.

5.2. Theoretical Directions

As argued in Section 3.2 the interactions with other stars
cause the WDs to diffuse in velocity, not in radius. However,
using the virial theorem we argued that this diffusion in
velocity would be manifest as a diffusion in radius as well.
Furthermore, our simple model assumes that the diffusion
coefficient is constant in space and time when in fact with time
the WD distribution approaches that of stars of similar mass so
the diffusion must cease and also at larger radii the diffusion
must happen more slowly. We see both of these effects in
Figures 8 and 9. How this diffusion actually manifests itself
could be simulated in two possible ways.
The first is direct numerical simulation of on order of one

million stars that form the central regions of the globular cluster
47 Tuc. This appears to be a Herculean labor because the state-
of-the-art direct calculation of the two body interactions in a
globular cluster involve merely ~105 stars and the simulation
in question would normally take 100 times longer. However,
we are only interested in the dynamical evolution of the young
WDs over about one hundredth of the age of the cluster
(100–150Myr out of 10 Gyr). Second, because we are not
interested in the long-term evolution of the cluster, neither
stellar evolution nor the dynamics of binaries should play an
important role in this process. These two simplifications result
in a factor of a thousand speed up to obtain results and these
calculations are already underway.
The second direction would be to model the diffusion in phase

space using a Fokker–Planck or Monte Carlo scheme (Giersz &
Heggie 2011; Pattabiraman et al. 2013; Hong et al. 2013). Such
simulations would be more rapid than a direct N-body
simulations and possibly yield more physical insights.

5.3. Further Observations

Following the arguments of Section 5.2 a natural direction
would be to measure the proper motions of the WDs in the core
of 47 Tuc with a second epoch of observations. Because we
already have the colors of the WDs, only observations in a

Figure 5. Upper panel: Monte Carlo simulations of an evolving density
distribution that are fit by an evolving distribution yield an unbiased estimate of
the cooling curve. Lower panel: if the evolving density distribution is not
included in the fitting the resulting cooling curve is typically steeper than the
input cooling curve; however, this difference is subtle. The initial guess is the
starting point for the iterative solution of the cooling curve.

Figure 6. Relative differences between the first, second, and third quartiles and
the input model for the different luminosity function fitting techniques.

Table 2
Diffusion Parameters from the Likelihood Fitting

κ t0 s0 Ṅ t r( )r c

Model ( ( )2 Myr−1) (Myr) (″) (Myr−1) (Myr)

Full 13.1 166 66 7.07 37
No Errors 13.1 166 66 7.07 37
2 Gaussians 12.8 14.9 19.5 1.90 38
(No Errors) L 260 82 5.32 L
Free LF 9.80 241 69 8.10 49

Note. The values of s0 and tr are given by kt2 0 and krc
2 , where = r 22c .

The posterior probabilities for the full model are given in Figure 7.
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single band would be required and possibly not as deep as the
present set of observations because the stars have already been
detected. To obtain the most precise positions and to minimize
the crowding, the bluest band would be best, i.e., F225W, and
possibly over only a portion of the field of the current data,

because here the goal would be to verify the current result by
finding the corresponding signal in velocity space, so a full
sample of 3000 plus WDs may not be required.

5.4. Final Remarks

We have measured directly for the first time the dynamical
relaxation of stars in a globular cluster. To do this we have
introduced new statistical techniques for the characterization of
stellar populations. These techniques can robustly and
straightforwardly account for high incompleteness and non-
Gaussian magnitude errors. They can be applied to a wide
variety of questions from globular cluster dynamics to galaxy
luminosity functions. There are many avenues for further
investigation, such as a more thorough analysis of the existing
data using the information from the second band, the
simulation of the relaxation of young WDs in numerical
models, and measuring the proper motions of the young WDs
to search for signatures of relaxation in their velocities as well.

Figure 7. Posterior probabilities of the best-fitting parameters. The upper panels depict the covariance among the various parameters. The contours trace probabilities a
factor of e, e2, and e3 smaller than the maximum likelihood. The color scale also gives the natural logarithm of the relative likelihood. The lower panels give the
likelihood as a function of a single parameter with the other parameters integrated out.

Figure 8. Radial distribution of white-dwarf samples of various age ranges and
median ages (given in parenthesis) and the best-fitting two-Gaussian diffusion
models superimposed. The core radius from Harris (1996) is depicted by the
vertical line.

Figure 9. Radial distribution of white-dwarf samples of various age ranges and
median ages (given in parenthesis) and the best-fitting two-Gaussian diffusion
models superimposed for the outer half of the region.

Figure 10. Flux in the WFC3 band F336W as a function of time since the peak
luminosity of the star that we define to be the birth of the “white dwarf.” The
model curve assumes a true distance modulus of 13.23 (Thompson et al. 2010)
and a reddening of - =E B V( ) 0.04 (Salaris et al. 2007). The “Inv Comp”’
technique ignores the effects of diffusion in modeling the stars and uses the
completeness rate corresponding to the observed magnitude and radius of
each star.
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