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Four small moons—Styx, Nix, Kerberos and Hydra—follow near-circular, near-equatorial 

orbits around the central “binary planet” comprising Pluto and its large moon, Charon. 

New observational details of the system have emerged following the discoveries of Kerberos 

and Styx. Styx, Nix and Hydra are tied together by a three-body resonance, which is 

reminiscent of the Laplace resonance linking Jupiter’s moons Io, Europa and Ganymede. 

However, perturbations by the other bodies inject chaos into this otherwise stable 

configuration. Nix and Hydra have bright surfaces similar to that of Charon. Kerberos, 

however, may be much darker, raising questions about how a heterogeneous satellite 

system might have formed. Nix and Hydra rotate chaotically, driven by the large torques of 

the Pluto-Charon binary. These results provide context for upcoming observations of the 

Pluto system by the New Horizons spacecraft in July 2015. 

 

Pluto’s moon Kerberos (previously designated “S/2011 (134340) 1” or, colloquially, “P4”) 

was discovered in 20111 using images from the Hubble Space Telescope (HST). It orbits 

between the paths of Nix and Hydra, which were discovered in 2005 and confirmed in 20062. 

Follow-up observations in 2012 led to the discovery of the still smaller moon Styx (“S/2012 

(134340) 1” or “P5”)3. The complete data set includes numerous additional detections of both 

objects from 2010–20124–6, plus a few detections from 2005 (Weaver, H. A., personal 

communication, 2011) and from 20067; see Supplementary Table 1. Figure 1 shows samples of 

the available images. Motivated by these discoveries, we investigate the dynamics and physical 

properties of Pluto’s four small outer moons. 
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Orbits 
Pluto and Charon comprise a “binary planet”—two bodies, similar in size, orbiting their 

common barycenter. Their mutual motion creates a time-variable and distinctly asymmetric 

gravity field. This induces wobbles in the outer moons’ orbits and also drives much slower 

apsidal precession and nodal regression8. In our analysis, we ignore the short-term wobbles and 

derive time-averaged orbital elements. This is equivalent to replacing the gravity field by that of 

two concentric rings containing the masses of Pluto or Charon, each with a radius equal to that 

body’s distance from the barycenter. 

We have modeled the orbits using six Keplerian orbital elements (semimajor axis a, 

eccentricity e, inclination i, mean longitude at epoch !0, longitude of pericenter "0 , and 

ascending node #0) plus three associated frequencies (mean motion n, nodal precession rate "̇, 

and apsidal regression rate #). We work in the inertial “P-C” coordinate frame, with Pluto and 

Charon in the x-y plane and the z-axis parallel to the system’s angular momentum pole (right 

ascension = 133.023°, declination = -6.218°)6. We have solved for these elements and 

frequencies under a variety of assumptions about how they are coupled (Extended Data Table 1). 

Table 1 lists the most robustly determined elements, in which we enforce a relationship that 

ensures "̇ $ -#; this allows us to fit eight elements rather than nine. We prefer this solution 

because root-mean-square (RMS) residuals are nearly the same as for the solution where "̇ and 

# are allowed to vary independently. Additional possible couplings, involving a and n as well, 

markedly increase the residuals for Styx and Nix; this suggests that non-axisymmetric 

gravitational effects, which are not modeled by our concentric ring approximation, can be 

important. The statistically significant (~ 100 km) residuals of Nix and Hydra (Table 1) match 

the predicted scale of the un-modeled wobbles8, and so are to be expected. 

Table 1 shows that e and i are distinctly nonzero; this was not apparent in prior work, which 

employed a different coordinate frame5 or was based on 200-year averages6. Our results describe 

each moon’s motion during 2005–2012 more accurately. Variations in n, e and i are detectable 

during 2010–2012 (Extended Data Fig. 1), illustrating the mutual perturbations among the moons 

that have been used to constrain their masses6. 
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Search for Resonances 
Pluto’s five moons show a tantalizing orbital configuration: the ratios of their orbital periods 

are close to 1:3:4:5:61,3,5,9. This configuration is reminiscent of the Laplace resonance at Jupiter, 

where the moons Io, Europa, and Ganymede have periods in the ratio 1:2:4. Table 1 shows 

orbital periods P of the moons relative to that of Charon, confirming the near-integer ratios. 

However, with measured values for "̇ and # in addition to n, it becomes possible to search for 

more complicated types of resonances. A general resonance involves an angle % = & j (pj !j + qj 

"j + rj #j) and its time derivative % = &j (pj nj + qj "j + rj #j). Here, (pj,  qj,  rj) are integer 

coefficients and each j subscript is C, S, N, K or H to identify the associated moon. A resonance 

is recognized by coefficients that sum to zero and produce a very small value of %; in addition, 

the resonant argument % usually librates around either 0° or 180°. 

Using the orbital elements and their uncertainties tabulated in Table 1, we have performed an 

exhaustive search for strong resonances in the Pluto system. One dominant three-body resonance 

was identified: % = 3!S - 5!N + 2!H $ 180°. This defines a ratio of synodic periods: 3SNH = 2SSN, 

where the subscripts identify the pair of moons. We find that % = -0.007 ± 0.001°/day and that % 

decreases from 191° to 184° during 2010–2012; this is all consistent with a small libration about 

180°. Note that this expression is very similar to that for Jupiter’s Laplace Resonance, where %L 

= !I - 3!E + 2!G $ 180° and 2SIE = SEG. For comparison, %L librates by only ~ 0.03°10. However, 

a similar resonant angle among the exoplanets of Gliese 876 librates about 0° by ~ 40°11. 

Using the current ephemeris and nominal masses6, our numerical integrations indicate that % 

circulates, meaning that the resonance is inactive (Fig. 2). However, libration occurs if we 

increase the masses of Nix and Hydra, MN and MH, upward by small amounts (Fig. 3). Between 

these two limits, % varies erratically and seemingly chaotically. Extension of Fig. 3 to higher 

masses reveals that libration is favored but never guaranteed. By random chance, it would be 

unlikely to find Styx orbiting so close to a strong three-body resonance, and our finding that % $ 

180° increases the likelihood that this resonance is active. We therefore believe that MN + MH has 

been slightly underestimated. The net change need not be large (! 1 ')6, and is also compatible 

with the upper limit on MN + MH required for the long-term orbital stability of Kerberos12. 
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Extended Data Fig. 2 shows that Kerberos contributes to the chaos. To understand its role, 

we perform simulations in which Pluto and Charon have been merged into one central body, 

thereby isolating the effects of the other moons on %. We perform integrations with MK = 0 and 

with MK nominal, and then Fourier transform %(t) to detect the frequencies of the perturbations 

(Extended Data Fig. 3). When MK is nonzero, the power spectrum shows strong harmonics of the 

three synodic periods SSK, SNK and SKH; this is because %(t) is a linear combination of !S(t), !N(t) 

and !H(t), and Kerberos perturbs each moon during each passage. The harmonics of a second 

three-body resonance also appear: "# = 42!S - 85!N + 43!K $ 180°, i.e., 42SNK $ 43SSN. This was 

the second strongest resonance found in our search; at the orbit of Styx, the two resonances are 

separated by just 4 km. This is reminiscent of the Uranus system, where chains of near-

resonances drive the chaos in that system13,14. 

These results will influence future models of Pluto system formation. Charon was probably 

formed by a large impact into Pluto15, and the outer moons accreted from the leftover debris. If 

Charon had a large initial eccentricity, then its corotation resonances could lock material into the 

1:3:4:5:6 relationship16. As Charon’s eccentricity damped, the resonant strengths waned, but the 

moons were left with periods close to these integer ratios17. This appealing model has numerous 

shortcomings, however18–20. The presence of a strong Laplace-like resonance places a new 

constraint on formation models. Additionally, future models must account for the nonzero 

eccentricities and inclinations of the small satellites; for example, these might imply that the 

system was excited in the past by resonances that are no longer active21,22. 

The resonance enforces a modified relationship between orbits: if PN/PC = 4 and PH/PC = 6, 

then PS/PC = 36/11 $ 3.27. Nevertheless, the other three near-integer ratios remain unlikely to 

have arisen by chance. Excluding Styx, the probability that three real numbers would all fall 

within 0.11 of integers is just 1%. 

Shapes, Sizes and Physical Properties 
Mean disk-integrated photometry for each moon is listed in Table 1. To infer the sizes of 

these bodies, we also require their geometric albedos pv. Charon is a relatively bright, with pv $ 
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38%. Kuiper Belt objects (KBOs) exhibit a large range of albedos, but the smallest KBOs tend to 

be dark; pv $ 4–8% is common23–26. 

The photometry is expected to vary with phase angle ( and, if a body is elongated or has 

albedo markings, with rotational phase. Extended Data Fig. 4 shows the raw photometry for Nix 

and Hydra. In spite of the otherwise large variations, an opposition surge is apparent for ( ! 

0.5°; this is often seen in phase curves and is indicative of surface roughness. After dividing out 

the phase function model, Fig. 4 shows our measurements vs. orbital longitude relative to Earth’s 

viewpoint. The measurements of Nix show no obvious pattern, suggesting that it is not in 

synchronous rotation; this is discussed further below. 

With unknown rotation states, we can only assess the light curves in a statistical sense. We 

proceeded with some simplifying assumptions. (1) Each moon is a uniform triaxial ellipsoid, 

with dimensions (a100, b100, c100), assuming pv = 100%. (2) Each measurement was taken at a 

randomly chosen, unknown rotational phase. (3) Each moon was in fixed rotation about its short 

axis. (4) The pole orientation may have changed during the gap in coverage between years; this 

is consistent with Supplementary Video 1, in which the rotation poles are generally stable for 

months at a time. We therefore describe the orientation by three values of sub-Earth 

planetocentric latitude, )2010, )2011, and )2012. We used Bayesian analysis to solve for the six 

parameters that provide the best statistical description of the data; see the Methods section for 

details. 

Nix has an unusually large axial ratio of ~ 2:1 (Table 1), comparable to that of Saturn’s 

extremely elongated moon, Prometheus. Hydra is also elongated, but probably less so. Also, 

Nix’s year-by-year variations (Fig. 4) are the result of a rotation pole apparently turning toward 

the line of sight; this explains both its brightening trend and also the decrease in its variations  

during 2010–2012 (Extended Data Fig. 5). Pluto’s sub-Earth latitude is 46°, so Hydra’s 

measured pole is nearly compatible with the system pole. Nix’s pole was ~ 20° misaligned in 

2010 but may have reached alignment by 2012. 

Given the inferred volume and an assumed albedo and density, we can estimate GM, where 

M is the mass and G is the gravitation constant. We consider four assumptions about the moons’ 

physical properties, and compare GM to the dynamical estimates6 (Table 1). Nix and Hydra are 
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probably bright, Charon-like objects; if they were darker, then GM would be too large to be 

compatible with upper limits on the masses12.  

Kerberos seems to be very different (Table 1). The dynamical inference that its mass is ~ 1/3 

that of Nix and Hydra, yet it reflects only ~ 5% as much sunlight, implies that it is very dark. 

This violates our expectation that the moons should be self-similar, due to the ballistic exchange 

of regolith27. Such heterogeneity has one precedent in the Solar System: at Saturn, Aegaeon is 

very dark (pv < 15%), unlike any other satellite interior to Titan, and even though it is embedded 

within the ice-rich G ring28. The formation of such a heterogeneous satellite system is difficult to 

understand. Alternatively, the discrepancy would go away if the estimate of MK is found to be 

high by ~ 2'; this has a nominal likelihood of 16%. Further study is needed. 

Rotation States 
Nearly every moon in the solar system rotates synchronously; the only confirmed exception 

is Hyperion, which is driven into chaotic rotation by a resonance with Titan29,30. Neptune’s 

highly eccentric moon Nereid may also rotate chaotically31, but observational support is 

lacking32,33. We have searched for rotation periods that are consistent with the light curves of Nix 

and Hydra (Fig. 4), but results have been negative (Extended Data Fig. 6). Although we can 

sometimes find a rotation period that fits a single year’s data (spanning 2–6 months), no single 

rotation period is compatible with all three years of data. 

Dynamical simulations explain this peculiar result: a binary planet tends to drive its moons 

into chaotic rotation. This is illustrated in Fig. 5, showing the simulated rotation period and 

orientation of Nix vs. time. The moon has a tendency to lock into near-synchronous rotation for 

brief periods, but these configurations do not persist. At other times, the moon rotates at a period 

entirely unrelated to its orbit. Supplementary Video 1 provides further insights into the behavior; 

for example, it shows occasional pole flips, a phenomenon consistent with the observed changes 

in Nix’s orientation. Lyapunov times are estimated to be a few months, or just a few times longer 

than the orbital periods. The time scale of the chaos depends on initial conditions and on 

assumptions about the axial ratios of the moons. The torques acting on a less elongated body 

such as Hydra are weaker, but nevertheless our integrations support chaos. 
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According to integrations spanning a few centuries, a moon that begins in synchronous 

rotation will stay there, albeit with large librations. It is therefore possible for synchronous 

rotation about Pluto and Charon to be stable. However, the large and regular torques of Pluto and 

Charon probably swamp the small effects of tidal dissipation within the moons, so they never 

have a pathway to synchronous lock. 

Both photometry and dynamical models support the hypothesis that Nix and Hydra are in 

chaotic rotation. The mechanism is similar to that driving Hyperion’s chaos, with Charon playing 

Titan’s role. However, Titan’s influence on Hyperion is magnified by a strong orbital resonance. 

For a binary such as Pluto-Charon, it appears to be a general result that non-spherical moons may 

rotate chaotically; no resonance is required. 

Future Observations 
The New Horizons spacecraft will fly past Pluto on July 14, 2015. At that time, many of the 

questions raised by this paper will be addressed. Although Kerberos will not be well resolved (2–

3 km/pixel), images will settle the question of whether it is darker than the other moons. The 

albedos and shapes of Nix (imaged at ! 0.5 km/pixel) and Hydra (at 1 km/pixel) will be very 

well determined. New Horizons will not obtain precise masses for the outer moons, but ongoing 

Earth-based astrometry and dynamical modeling will continue to refine these numbers, while 

also providing new constraints on the Laplace-like resonance. Because this resonance has a 

predicted libration period of centuries, the dynamical models will confirm or refute it long before 

a complete libration or circulation period can be observed. 

Chaotic dynamics makes it is less likely to find rings or additional moons of Pluto. Within 

the Styx-Hydra region, the only stable orbits are coorbitals of the known moons. The region 

beyond Hydra appears to be the most likely region to find additional moons17, although some 

orbits close to Pluto are also stable34. Independent of the new discoveries in store, we have 

already learned that Pluto hosts a rich and complex dynamical environment, seemingly out of 

proportion to its diminutive size. 
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Angles are measured from the ascending node of the P-C orbital plane on the J2000 equator. The 

epoch is UTC on July 1, 2011. Uncertainties are 1 '. A = disk-integrated reflectivity; R100, R38 

and R06 are radius estimates assuming a spherical shape and pv = 100%, 38%, and 6%; V100 is the 

ellipsoidal volume if pv = 1. Estimates of GM = G * pv
-3/2 V100 are shown for properties 

resembling those of Charon (density * = 1.65 g/cm3; pv = 0.38) and three types of KBOs: 

“bright” ($ = 0.5; pv = 0.1), “median” (* = 0.65; pv = 0.06), and “dark” (* = 0.8; pv = 0.04). 

Boxes enclose values within one sigma of the dynamical mass constraints6.  

Table 1 | Derived properties of the moons 
Property Styx Nix Kerberos Hydra 
a (km) 42,656 ± 78 48,694 ± 3 57,783 ± 19 64,738 ± 3 
!0 (°) 276.856 ± 0.096 63.866 ± 0.006 94.308 ± 0.021 197.866 ± 0.003 

n (°/day) 17.85577 ± 0.00024 14.48422 ± 0.00002 11.19140 ± 0.00005 9.42365 ± 0.00001 
e (10-3) 5.787 ± 1.144 2.036 ± 0.050 3.280 ± 0.200 5.862 ± 0.025 
"0 (°) 296.1 ± 9.4 221.6 ± 1.4 187.6 ± 3.7 192.2 ± 0.3 

" ̇ (°/day) 0.506 ± 0.014 0.183 ± 0.004 0.115 ± 0.006 0.070 ± 0.001 

i (°) 0.809 ± 0.162 0.133 ± 0.008 0.389 ± 0.037 0.242 ± 0.005 
#0 (°) 183.4 ± 12.5 3.7 ± 3.4 225.2 ± 5.4 189.7 ± 1.2 

# ! (°/day) -0.492 ± 0.014 -0.181 ± 0.004 -0.114 ± 0.006 -0.069 ± 0.001 
P (days) 20.16155 ± 0.00027 24.85463 ± 0.00003 32.16756 ± 0.00014 38.20177 ± 0.00003 

P/PC 3.156542 ± 0.000046 3.891302 ± 0.000004 5.036233 ± 0.000024 5.980963 ± 0.000005 
RMS (') 1.44 2.59 1.27 2.77 

RMS (mas) 17.8 4.22 11.2 3.21 
RMS (km) 397 94 248 72 

A (km2) 14 ± 4 470 ± 75 29 ± 8 615 ± 55 
R100 (km) 2.1 ± 0.3 12.2 ± 1.0 3.0 ± 0.4 14.0 ± 0.6 
R38 (km) 3.4 ± 0.5 19.8 ± 1.6 4.9 ± 0.7 22.7 ± 1.0 
R06 (km) 8.6 ± 1.2 50 ± 4 12.4 ± 1.7 57 ± 3 
a100/b100    2.1 ± 0.6    1.7 ± 0.6 
b100/c100    1.2 ± 0.2    1.2 ± 0.2 
)2010 (°)    25 ± 10    39 ± 16 
)2011 (°)    37 ± 15    46 ± 18 
)2012 (°)    46 ± 17    38 ± 16 

V100 (km3) 39 ± 17 5890 ± 1040 117 ± 49 8940 ± 1640 
GM (10-3 km3/s2) 0.0 + 1.0 3.0 ± 2.7 1.1 ± 0.6 3.2 ± 2.8 

Charon-like 0.018 ± 0.008 2.8 ± 0.5 0.06 ± 0.03 4.2 ± 0.8 
Bright KBO 0.04 ± 0.02 6.2 ± 1.1 0.12 ± 0.05 9.4 ± 1.7 

Median KBO 0.12 ± 0.05 17 ± 3 0.35 ± 0.14 26 ± 5 
Dark KBO 0.26 ± 0.11 39 ± 7 0.78 ± 0.32 60 ± 11 
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Figure 1 | Example HST images of Pluto’s small moons. (a) Kerberos detected May 18, 2005, 

in the Nix/Hydra discovery images. (b) Kerberos in the Nix and Hydra confirmation images, 

February 2, 2006. (c) A marginal detection of Styx, along with Kerberos, on March 2, 2006. (d) 

All four moons, June 25, 2010. (e) The Kerberos discovery image, June 28, 2011, with Styx also 

identified. (f) The Styx discovery image, July 7, 2011. All images were generated by coadding 

similar images and then applying an unsharp mask to suppress the glare from Pluto and Charon. 

 

Figure 2 | Numerical integrations of the Styx-Nix-Hydra resonance. Resonant angle % is 

plotted vs. time, using three assumptions for the GMH: 0.0032 (a), 0.0039 (b), and 0.0046 km2/s3 

(c); these values are equivalent the nominal mass, a 0.25' increase, and a 0.5' increase6. GMN = 

0.0044 km2/s3 throughout, equivalent to 0.5' above its nominal mass. The modest increase in the 

MH is sufficient to force a transition of % from circulation (Styx outside resonance) to libration 

(Styx locked in resonance). 

 

Figure 3 | Mass-dependence of the Laplace-like resonance. The shade of each square indicates 

whether the associated pair of mass values produces circulation (black) or libration (white) 

during a 10,000 year integration. The moon masses MH and MN are each allowed to vary from 

nominal to nominal + 1'[6]. MK is nominal. Shades of gray define transitional states: light gray if 

% is primarily circulating; dark gray if % is primarily librating; medium gray for intermediate 

states. The transition between black and white is not monotonic, suggesting a fractal boundary. 

 

Figure 4 | Normalized light curves.  Disk-integrated photometry and 1-' uncertainties for (a) 

Nix and (b) Hydra have been normalized to ( = 1° and then plotted as a function of projected 

orbital longitude. Here 0° corresponds to inferior conjunction with Pluto as seen from Earth. 

Measurements are color coded by year: red = 2010; green = 2011; blue = 2012. A tidally locked 

moon would systematically brighten at maximum elongation (90° and 270°). 

 

Figure 5 | Numerical simulations of Nix’s rotation. (a) The instantaneous rotation period is 

compared to the synchronous rate (dashed line). (b) The orientation is described by the angle 
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between Nix’s long axis and the direction toward the barycenter. Nix librates about 0° or 180° 

for periods of time, but it jumps out of these states frequently. 

 

Extended Data Figure 1 | Variations in orbital elements by year. Changes in (a) mean 

motion, (b) eccentricity, and (c) inclination are shown during 2010–2012 for Nix (red), Kerberos 

(green) and Hydra (blue). Vertical bars are ± 1 '. Each individual point is a fit to a single year of 

data (cf. Extended Data Table 1). In (a), +n is the mean motion of each body minus its average 

during 2006–2012. 

 

Extended Data Figure 2 | The role of Kerberos in the Laplace-like resonance. We have 

initiated an integration with Styx exactly in its resonance with Nix and Hydra, and then have 

allowed it to evolve for 10,000 years. The diagrams are for (a) MK nominal, (b) MK reduced by 1 

', (c) MK = 0. The amplitude of the libration is stable when Kerberos is massless, but shows 

erratic variations otherwise. 

 

Extended Data Figure 3 | Spectral signatures of Kerberos. We merge Pluto and Charon into a 

single central body and integrate "(t) for Styx in exact resonance. The power spectrum for MK = 

0 (light gray) obscures the same spectrum for MK is nominal. Unobscured spikes are caused by 

Kerberos. (a) The impulses of Kerberos passing each moon create a signature at the synodic 

period and its overtones: SSK = 53.98 days (green); SNK = 109.24 days (red); SKH = 203.92 days 

(blue). (b) Harmonics of the second resonance, with period 42SNK $ 43SSN $ 4590 days, are also 

visible. The 3/2 harmonic is unexplained. 

 

Extended Data Figure 4 | Satellite phase curves. Raw disk-integrated photometry has been 

plotted vs. phase angle ( for (a) Nix and (b) Hydra. Vertical bars are ± 1 '. An opposition surge 

is apparent. A simple parametric model for the phase curve is shown: c , (1 + d/(), where d is 

fixed but c is scaled to fit each moon during each year. Measurements and curves are color coded 

by year: red = 2010; green = 2011; blue = 2012. 

 



 15 

Extended Data Figure 5 | Distribution of photometric measurements by year. The black 

curves show the theoretical distribution of A by year for Nix (a = 2010; b = 2011; c = 2012) and 

Hydra (d = 2010; e = 2011; f = 2012), after convolution with the measurement uncertainties. 

The histogram of measurements from each year are shown in red. In spite of small number 

statistics, the measurements appear to be well described by the models, which have been derived 

via Bayesian analysis. 

 

Extended Data Figure 6 | Searches for rotation periods in the light curves. We fitted a 

simple model involving a frequency and its first harmonic to the photometry (Eq. 10) of (a) Nix 

and (b) Hydra. Curves are plotted for data from 2010 (red), 2012 (blue) and for three years 
2010–2012 (black). Local minima with RMS residuals ! 1 indicate a plausible fit. The orbital 

periods and half-periods are identified; if either moon were in synchronous rotation, we would 

expect to see minima near either P (for albedo variations) or P/2 (for irregular shapes). 

 

Extended Data Table 1 | Orbital elements based on coupling various orbital elements and 

based on subsets of the data. Columns M1 and M0 identify the numbers of measurements 

included in and excluded from the fit; N indicates the number of free parameters. When N = 8, 
we derived # from the relationship -2 = 2n2 - .2. For N = 7, # and "̇ were both derived from n 

and the gravity field using Eqs. 5b,c. For N = 6, a was also coupled to n via Eq. 5a. N = 3 

indicates a fit to a circular orbit. For fits to single years of data, the epoch is July 1 UTC for that 

year. We disfavor N / 7 in the multi-year fits because some residuals increase significantly. 
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Methods 

Data Selection and Processing 

Our data set encompasses all available HST images of the Pluto system during 2006 and 

2010–2012, plus Kerberos in 2005. We neglected HST observations from 2002, 2003, and 

20075,10, because they are of generally lower quality, rendering Kerberos and Styx undetectable. 

We emphasized long exposures through broad-band filters, although brief exposures of Charon 

and Pluto provided geometric reference points. Supplemental Table 1 lists the images and bodies 

measured. We analyzed the calibrated (“flt”) image files. To detect Kerberos and Styx, it was 

often necessary to align and coadd multiple images from the same visit; files produced in this 

manner are listed in the table with a “coadd” suffix. 

We fitted a model point spread function (PSF) to each detectable body. The PSFs were 

generated using the “Tiny Tim” software maintained by the Space Telescope Science Institute 

(STScI)35,36. Upon fitting to the image, the center of the PSF provides the astrometry and the 

integrated volume under the 2-D curve, minus any background offset, is proportional to the disk-

integrated photometry. We measured objects in order of decreasing brightness and subtracted 

each PSF before proceeding; this reduced the effects of glare on fainter objects. Measurements 

with implausible photometry were rejected; this was generally the result of nearby background 

stars, cosmic ray hits, or other image flaws. Further details of the analysis are provided 

elsewhere6. Styx photometry (Table 1) might be biased slightly upward by our exclusion of non-

detections; however, photometry of the other moons is very robust. 

The Pluto-Charon Gravity Field 

We have simplified the central gravity field by taking its time-average. The resulting 

cylindrically symmetric gravity field can then be expressed using the same expansion in 

spherical harmonics that is traditionally employed to describe the field of an oblate planet: 

V(r, 0, )) = -GM/r , [1 - &
m=2

%
  Jm  (R/r)m , Pm(sin )) ]. [1] 

Here (r, 0, )) are polar coordinates, where r is radius and 0 and ) are longitude and latitude 

angles, respectively; G is the gravitation constant, M is the body’s mass, R is its equatorial 

radius, Pm are the Legendre Polynomials, Jm are coefficients in the expansion. The dependence 
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on 0 and the odd m-terms in the series vanish by symmetry. The coefficients Jm can be 

determined by noting that the potential along the axis of the ring simplifies considerably: 

V(r, )=1/2) = -GM/r , [1 + (R/r)2]-1/2. [2] 

This can then be compared to the definition of Legendre Polynomials: 

(1 - 2xt + t2)-1/2 = &
m=0

%
  t m Pm(x). [3] 

Substituting t = (R/r) and evaluating the expression for x = 0 yields: 

V(r, )=1/2) = -GM/r , &
m=0

%
 (R/r)m Pm(0) . [4] 

Noting that Pm(1) = 1 for all m, equations [1] and [4] can only be equal if the coefficients Jm are 

negatives of the Legendre Polynomials evaluated at zero: J2 = 1/2, J4 = -3/8, J6 = 5/16, etc. Given 

this sequence of coefficients, we can determine n, "̇, and # as a functions of semimajor axis a: 

n2(a) = GM/a3 , [1 - &
m=2

%
 (1 + m) Jm (R/a)m Pm(0) ]; [5a] 

.2(a) = GM/a3 , [1 - &
m=2

%
 (1 - m2) Jm (R/a)m Pm(0) ]; [5b] 

-2(a) = GM/a3 , [1 - &
m=2

%
 (1 + m)2 Jm (R/a)m Pm(0) ]. [5c] 

Here . is the epicyclic frequency and - is the vertical oscillation frequency. It follows that 

"̇(a) = n(a) - .(a) and #(a) = n(a) - -(a) . In practice, we treated n as the independent variable 

because it has the strictest observational constraints, and then derived a, "̇, and # from it. 

Orbit Fitting 

We modeled each orbit as a Keplerian ellipse in the P-C frame, but with additional terms to 

allow for apsidal precession and nodal regression. Our model is accurate to first order in e and i; 

any second-order effects can be neglected because they would be minuscule compared to the 

precision of our measurements. 

We also required an estimate for the location of the system barycenter in each set of images. 

Because HST tracking is extremely precise between consecutive images, the barycenter location 

was only calculated once per HST orbit. We solved for the barycenter locations first and then 
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held them fixed for subsequent modeling of the orbital elements. Barycenter locations were 

derived from the astrometry of Pluto, Charon, Nix and Hydra. We locked Pluto and Charon to 

the latest JPL ephemeris, PLU0436. We accounted for the offset between center-of-light and 

center-of-body for Pluto using the latest albedo map37. However, because the number of Pluto 

and Charon measurements is limited, we also allowed Nix and Hydra to contribute to the 

solution. For each single year 2006–2012, we solved simultaneously for the barycenter location 

in each image set and also for orbital elements of Nix and Hydra. For the detection of Kerberos 

in 2005, the only available pointing reference was Hydra, which we derived from PLU043. By 

allowing many measurements to contribute to our barycenter determinations, we could improve 

their quality but also limit any bias introduced by shortcomings of our orbit models. Derived 

uncertainties in the barycenter locations are much smaller than any remaining sources of error. 

A nonlinear least-squares fitter indentified the best value for each orbital element and also the 

covariance matrix, from which uncertainties could be derived. However, as noted in Table 1 and 

Extended Data Table 2, our RMS residuals (equivalent to the square root of 22 per degree of 

freedom) exceed unity. For Styx and Kerberos, marginal detections probably contributed to the 

excess; for Nix and Hydra, we have identified the source as the un-modeled wobbles in the 

orbits. All uncertainty estimates have been scaled upward to accommodate these underestimates. 

During the orbit fits, we rejected individual points with excessive residuals, based on the 

assumption that they were misidentifications or the results of poor PSF fits. Extended Data Table 

1 lists values for the number of included (M1) and rejected (M0) measurements. Rejecting points, 

however, would bias our uncertainty estimates downward. We compensated by running Monte 

Carlo simulations in which we generated (M0+M1) gaussian distributed, 2-D random variables 

and then rejected the M0 that fall furthest from the origin. The standard deviation among the 

remainder then gave us an estimate of the factor by which we might have inadvertently reduced 

our error bars. With this procedure, accidentally rejecting a small number of valid measurements 

would not bias the uncertainties. 

We also explored the implications of making various assumptions of how the orbital 

elements are coupled (Extended Data Table 1). For the purposes of this paper, we have adopted 

the N = 8 solutions in which # can be derived from n and "̇. This assumption is helpful because, 
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when e and i are small, the frequencies "̇ and # are especially difficult to measure. By allowing 

them to be coupled, we obtained more robust results. Nevertheless, our expectation that  "̇ and # 

should be roughly equal in magnitude but opposite in sign has been well supported by most of 

our uncoupled, N = 9 fits. 

Resonance Analysis 

We have defined a general resonance using a set of integer coefficients (pj, qj, rj). The 

strength of a resonance is  

C(p,q,r) , 3 &j , 3 ej
|qj| , 3 sin|rj|(ij) , [6] 

where &j is the mass ratio of moon j to the mass of Pluto. The first product excludes the mass of 

the smallest moon involved, because a resonance can exist even if one moon is a massless test 

particle. The function C defines a strength factor; however, because it has no simple expression, 

we ignore it in this analysis except to note, qualitatively, that the strongest resonances tend to 

involve small coefficients and/or small differences between coefficients. 

We performed an exhaustive search for all possible resonances involving up to four nonzero 

coefficients, with |pj| / 300, |qj| / 4, and |rj| / 4. Symmetry dictates that the coefficients sum to 

zero and that &j rj must be even38. Because Charon follows a circular, equatorial orbit, qC = rC = 

0. We first identified possible resonances by % < 0.1°/day, and then followed up by evaluating % 

for each year. Sets of coefficients for which % values clustered near 0° or 180° were given 

preference. We also favored sets of coefficients that have simple physical interpretations, and 

where the absolute values were small and/or close to one another.  

Orbital Integrations 

Our orbit simulations employed the numeric integrator SWIFT39,40. We used PLU0436 as our 

reference ephemeris; it provides state vectors (positions and velocities) for all the bodies in the 

system vs. time. For simplicity, we neglected bodies outside the Pluto system in most 

integrations. The Sun is the dominant external perturber, shifting the moons by a few tens of km, 

primarily in longitude, after one Pluto orbit of 248 years; this is < 1% of our orbital uncertainties. 
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Each integration must begin with initial state vectors and masses for each body. However, the 

state vectors and masses are closely coupled; any change to one mass requires that we adjust all 

of the state vectors in order to match the observed orbits. Ideally, this would be accomplished by 

re-fitting to all of the available astrometry, but that task is beyond the scope of this paper. To 

simplify the problem, we generated false astrometry derived directly from PLU043, but sampled 

at the times of all prior HST visits that detected one or more of the four outer moons. Such 

measurements date back to June 11, 20025,6,9. For each set of assumed masses, we used a 

nonlinear least-squares fitter to solve for the initial state vectors that optimally matched this 

astrometry. A similar technique was used to model the affects of moon masses on the chaotic 

dynamics of the Uranus system41. This procedure guarantees that our numeric integrations will 

match the actual astrometry with reasonable accuracy, regardless of the masses assumed. 

For a few numerical experiments, we investigated the consequences of placing Styx exactly 

into its Laplace-like resonance (Extended Data Figs. 2 and 3). We accomplished this by 

generating a different set of false astrometry, in which the position of Styx was derived from the 

requirement that % = 180° at all times. 

Photometry 

Our numerical simulations suggest that typical rotation periods for each moon are 

comparable to the orbital period, i.e., several weeks. Because this time scale is long compared to 

one or a few of HST’s 95-minute orbits, we combined measurements obtained from single or 

adjacent orbits. In Supplementary Table 1, adjacent orbits are indicated by an orbit number of 2 

or 3. Our photometry (Fig. 4 and Extended Data Fig. 4) is defined by the mean and standard 

deviation of all measurements from a single set of orbits. 

We considered two simple models for the light curves described as reflectivity A vs. time t: 

A1(t) = c0 + c1 sin(4t) + c2 cos(4t) [7a] 

A2(t) = c0 + c1 sin(4t) + c2 cos(4t) + c3 sin(24t) + c4 cos(24t) [7b] 

We then sought the frequency 4 that minimizes residuals. Given the small number of 

measurements in individual years, it was inappropriate to attempt more sophisticated models. 

Results are shown in Extended Data Figure 6. For the data from 2010, we did identify 
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frequencies where the residuals are especially small, suggesting that we may have identified a 

rotation rate for that subset of the data. However, in no case does a frequency persist from 2010 

to 2012. 

Shape Modeling 

We have described the axial orientation relative to the line of sight using sub-Earth 

planetocentric latitude ). The hypothetical light curve of an ellipsoid is roughly sinusoidal; its 

projected cross section on the sky varies between extremes Amin and Amax. If ) = 0, Amin = 1bc 

and Amax = 1ac. If ) = 90°, then Amin = Amax = 1ab. More generally, 

Amin(a,b,c,)) = 1b (c2 cos2) + a2 sin2))1/2 [8a] 

Amax(a,b,c,)) = 1a (c2 cos2) + b2 sin2))1/2 [8b] 

If ) is fixed and each measurement was obtained at a uniformly distributed, random rotational 

phase, then the conditional probability density function for a cross section A given Amin and Amax 

is: 

P(A | Amin, Amax) 5 (1 - [(A - A0) / +A]2)-1/2  , [9] 

where A0 ' (Amax + Amin)/2 and (A = (Amax - Amin)/2. In reality, each measurement A has an 

associated uncertainty '. This has the effect of convolving P with a normal distribution N(A,'), 

with zero mean and standard deviation '. 

P['](A | Amin, Amax, ') 5 (1 - [(A - A0) / +A]2)-1/2  6  N(A,') , [10] 

where the 6 operator represents convolution. 

However, simulations show that ) varies due to chaotic rotation driven by the central binary 

(Supplementary Video 1). To simplify this analysis, we have assumed that ) was fixed during 

each year during which we obtained data, but that changes may have occurred between years; 

this is generally consistent with time spans of our data sets (a few months per year) and the 

infrequency of large pole changes in the simulations. This leads us to define three unknowns 

)2010, )2011, and )2012. Because Amin and Amax depend only on sin2) and cos2), we replace 

unknowns ) by S ' sin2) in our analysis. 
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We have a vector of independent measurements A = (A0, A1, ….) and uncertainties '  = ('0, 

'1, ….), so the joint, conditional probability of obtaining all our measurements is a product: 

P(A | a, b, c, S2010, S2011, S2012) = 3 P['k](Ak | Amin(a,b,c,Sy[k]), Amax(a,b,c,Sy[k])) , [11] 

where y[k] is the year associated with measurement k. Instead, we seek the joint, conditional 

probability density function P(a, b, c, S2010, S2011, S2012 | A). This is a problem in Bayesian 

analysis: 

P(a, b, c, S2010, S2011, S2012 | A) = 

P(A | a, b, c, S2010, S2011, S2012) , P(A) / P(a, b, c, S2010, S2011, S2012) [12] 

Here P(A) and P(a, b, c, S2010, S2011, S2012) represent our assumed “prior probability”

distributions for these quantities. We have no prior information about our measurements Ak, so 

we assume that they are uniformly distributed. The second prior can be broken down as 

P(a, b, c, S2010, S2011, S2012) = P(a, b, c) P(S2010) P(S2011) P(S2012) [13] 

because orientations are independent of shape and of one another. If the pole in each year is 

randomly distributed over 41 steradians, then P()) 5 cos ) and P(S) 5 S-1/2. 

We model our prior for the shape as P(a, b, c) = P1(u) P2(v) P3(w), where u ' abc; v ' a/b; 

and w ' b/c. This states that we will regard the ellipsoid’s volume and its two axial ratios as 

statistically independent. We have assumed that log(u) is uniformly distributed rather than u 

itself, which implies P1(u) 5 1/u. Experience with other irregularly-shaped planetary objects 

suggests that large ratios a/b and b/c are disfavored, with values rarely exceeding 2. After a bit of 

experimentation, we adopted P2(v) 5 1/v3 and P3(w) 5 1/w3. Alternative but similar assumptions 

had little effect on our results. 

The above equations provide a complete solution to the joint probability function P(a, b, c, 

S2010, S2011, S2012). We solved for the complete 6-dimensional function, represented as a 6-D 

array. Quantities listed in Table 1 were derived as the mean and standard deviation of P along 

each of its six axes, with S converted back to ). Extended Data Figure 5 compares the 

distribution of measurements by year with the reconstructed probability distributions. 
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Simulations of Rigid Body Rotation 

The orientation of the ellipsoid can be defined by a unit quaternion: q = [cos(0/2), sin(0/2) u] 

represents a rotation by angle 0 about unit axis vector u. The time-derivative dq/dt = [0, 4] , q/2, 

where 4  is the spin vector. We used a Bulirsch-Stoer integrator to track q, dq/dt, x and dx/dt, 

where x is the position of the ellipsoid relative to the barycenter. The forces and torques acting 

were defined by Pluto and Charon following fixed circular paths around the barycenter; this 

motion was pre-defined for the simulations, not integrated numerically. We derived d2x/dt2 from 

the gravity force of each body on the ellipsoid. We also required the second derivative of q: 

d2q/dt2 = [-|4|2/2, (] , q/2, where (  is the time-derivative of !. We related (  to the torque 

applied by Pluto and Charon on the ellipsoid: 

7 = 3 GMP rP 8 (I rP) / |rP|5 + 3 GMC rC 8 (I rC) / |rC|5 , [14] 

where rk = x - xk is the vector offset from each body center to the ellipsoid’s center and I is the 

ellipsoid’s moment of inertia tensor. In the internal frame of the ellipsoid, the moment of inertia 

tensor I0 is diagonal, with I11 = M/5 (b2 + c2),  I22 = M/5 (a2 + c2), and  I33 = M/5 (a2 + b2). It is 

rotated to the system coordinate frame via the rotation matrix R, which can be calculated from q: 

I = R I0 RT. We then solve for (  via the relation 7 = I (  + 4 8 I 4 . 

Code Availability 

Portions of our software are available at https://github.com/seti/pds-tools. We have opted not 

to release the entire source code because it is built atop additional large libraries representing 

decades of development. Instead, we have documented our algorithms with sufficient detail to 

enable others to reproduce our results.  
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Moon Years N a
(km)

0

(°)
n

(°/day)
e

(10 -3)
0

(°) (°/day)
i

(°)
0

(°) (°/day)
P

(days) P/P C
RMS

( )
RMS

(mas)
RMS 
(km) M1 M0

Styx 2006–2012 9 42,662 276.8627 17.855814 5.892 296.15 0.49961 0.819 182.64 -0.50097 20.16150 3.156534 1.45 17.9 397 47 19

± 81 0.0983 0.000255 1.179 9.49 0.02288 0.164 12.60 0.02376 0.00029 0.000050

Styx 2006–2012 8 42,656 276.8562 17.855770 5.787 296.05 0.50581 0.809 183.36 -0.49187 20.16155 3.156542 1.44 17.8 397 47 19

± 78 0.0955 0.000235 1.144 9.40 0.01405 0.162 12.50 0.00027 0.000046

Styx 2006–2012 7 42,484 276.5918 17.855355 1.162 347.19 0.37688 0.381 176.10 -0.36908 20.16202 3.156615 1.79 19.3 429 47 19

± 82 0.1046 0.000286 1.117 64.15 0.242 27.27 0.00032 0.000052

Styx 2006–2012 6 42,422 276.5781 17.855333 1.054 7.70 0.37688 0.302 169.14 -0.36908 20.16204 3.156619 1.79 19.1 426 47 19

± 0.1031 0.000285 1.102 65.26 0.215 33.76 0.00032 0.000052

Styx 2010 7 43,549 239.9346 17.840396 7.733 138.44 0.37600 2.502 0.88 -0.36824 20.17892 3.159262 1.29 12.9 288 7 4

± 617 0.2837 0.005338 2.225 16.61 0.894 13.64 0.00604 0.00604 0.000871

Styx 2011 3 42,383 277.0515 17.807823 3.165041 1.10 16.1 363 12 1

± 0.1879 0.018868 0.003818

Styx 2012 7 42,856 332.3448 17.868293 6.915 116.85 0.37763 1.215 11.66 -0.36982 20.14742 3.154330 1.46 19.1 432 26 13

± 117 0.2178 0.014056 1.712 11.95 0.297 13.73 0.01585 0.01585 0.003199

Nix 2006–2012 9 48,697 63.8733 14.484221 2.022 220.27 0.19074 0.139 358.77 -0.15203 24.85463 3.891303 2.58 4.22 94 831 27

± 3 0.0059 0.000015 0.050 1.41 0.00436 0.008 3.41 0.00842 0.00003 0.000004

Nix 2006–2012 8 48,694 63.8655 14.484222 2.036 221.64 0.18325 0.133 3.73 -0.18096 24.85463 3.891302 2.59 4.25 95 831 27

± 3 0.0056 0.000015 0.050 1.40 0.00409 0.008 3.40 0.00003 0.000004

Nix 2006–2012 7 48,696 63.8580 14.484244 2.022 213.64 0.21395 0.133 15.03 -0.21084 24.85459 3.891296 2.65 4.35 97 831 27

± 3 0.0054 0.000016 0.043 1.15 0.008 3.21 0.00003 0.00003 0.000004

Nix 2006–2012 6 48,693 63.8573 14.484240 2.030 213.40 0.21395 0.132 13.88 -0.21084 24.85460 3.891297 2.65 4.35 97 831 27

± 0.0054 0.000016 0.041 1.13 0.008 2.89 0.00003 0.000050

Nix 2010 7 48,670 177.1349 14.483409 3.297 146.01 0.21392 0.070 319.59 -0.21080 24.85603 3.891521 2.17 4.41 99 85 2

± 10 0.0158 0.000385 0.143 2.37 0.024 20.48 0.00066 0.00066 0.000100

Nix 2011 7 48,670 63.8130 14.484954 1.598 229.57 0.21398 0.107 352.81 -0.21086 24.85338 3.891106 2.75 5.22 117 124 11

± 8 0.0187 0.000346 0.123 4.32 0.023 13.89 0.00059 0.00059 0.000094

Nix 2012 7 48,704 325.0999 14.481191 2.068 292.10 0.21383 0.163 302.70 -0.21072 24.85983 3.892117 2.35 3.71 84 613 14

± 4 0.0067 0.000382 0.060 1.27 0.011 3.51 0.00066 0.00066 0.000101

Kerberos 2005–2012 9 57,832 94.3375 11.191287 3.471 186.59 0.12121 0.356 241.86 -0.20985 32.16788 5.036283 1.27 11.2 248 185 32

± 20 0.0206 0.000063 0.209 3.58 0.00795 0.037 5.48 0.01302 0.00018 0.000030

Kerberos 2005–2012 8 57,783 94.3078 11.191398 3.280 187.64 0.11536 0.389 225.15 -0.11419 32.16756 5.036233 1.26 11.2 249 185 32

± 19 0.0211 0.000050 0.200 3.74 0.00615 0.037 5.43 0.00014 0.000024

Kerberos 2005–2012 7 57,781 94.3074 11.191394 3.272 187.28 0.10957 0.385 225.17 -0.10851 32.16757 5.036234 1.27 11.3 251 185 32

± 19 0.0214 0.000050 0.203 3.75 0.037 5.54 0.00014 0.00014 0.000024

Kerberos 2005–2012 6 57,750 94.3085 11.191397 3.221 187.86 0.10957 0.411 226.88 -0.10851 32.16756 5.036233 1.27 11.2 249 185 32

± 0.0213 0.000050 0.199 3.79 0.035 4.86 0.00014 0.000024

Kerberos 2010 7 57,825 329.5189 11.189590 4.877 140.09 0.10953 0.284 298.05 -0.10846 32.17276 5.037046 1.24 8.78 196 30 10

± 48 0.0542 0.001181 0.481 5.69 0.090 17.99 0.00340 0.00340 0.000561

Kerberos 2011 7 57,776 94.1883 11.194672 1.890 216.87 0.10965 0.515 250.03 -0.10859 32.15815 5.034760 1.19 6.99 157 30 1

± 40 0.0680 0.001446 0.497 14.19 0.084 8.23 0.00415 0.00415 0.000652

Kerberos 2012 7 57,803 230.3510 11.190758 3.335 233.57 0.10955 0.434 172.29 -0.10849 32.16940 5.036521 1.24 12.28 278 119 20

± 38 0.0418 0.004783 0.423 8.24 0.074 10.08 0.01375 0.01375 0.002352

Hydra 2006–2012 9 64,741 197.8685 9.423633 5.837 192.40 0.06842 0.244 191.15 -0.08762 38.20183 5.980972 2.73 3.19 71 835 24

± 3 0.0032 0.000009 0.025 0.26 0.00081 0.005 1.19 0.00317 0.00003 0.000005

Hydra 2006–2012 8 64,738 197.8662 9.423647 5.862 192.22 0.06986 0.242 189.67 -0.06934 38.20177 5.980963 2.77 3.21 72 835 24

± 3 0.0032 0.000008 0.025 0.27 0.00080 0.005 1.17 0.00003 0.000005

Hydra 2006–2012 7 64,738 197.8664 9.423645 5.861 192.04 0.07101 0.242 189.91 -0.07048 38.20178 5.980965 2.77 3.22 72 835 24

± 3 0.0032 0.000008 0.025 0.24 0.005 1.15 0.00003 0.00003 0.000005

Hydra 2006–2012 6 64,721 197.8691 9.423638 5.881 192.04 0.07101 0.249 193.12 -0.07048 38.20181 5.980969 2.80 3.25 72 835 24

± 0.0032 0.000008 0.025 0.24 0.005 0.99 0.00003 0.000005

Hydra 2010 7 64,730 358.2681 9.423299 6.661 165.04 0.07101 0.334 219.90 -0.07048 38.20318 5.981184 2.77 3.07 69 85 2

± 8 0.0079 0.000199 0.080 0.63 0.013 2.25 0.00081 0.00081 0.000124

Hydra 2011 7 64,746 197.8686 9.423495 5.722 192.77 0.07101 0.242 193.93 -0.07048 38.20239 5.981060 2.88 3.24 73 135 12

± 12 0.0166 0.000157 0.271 2.13 0.030 4.77 0.00064 0.00064 0.000088

Hydra 2012 7 64,739 46.9262 9.422786 5.763 218.15 0.07100 0.214 157.81 -0.07047 38.20526 5.981510 2.35 2.93 66 606 10

± 3 0.0033 0.000592 0.050 0.43 0.006 1.91 0.00240 0.00240 0.000379

Extended Data Table 1
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