Pitfalls in Making Pretty Pictures

Mischa Schirmer^{1,2}

¹Argelander-Institut für Astronomie, Univ. Bonn, Germany

²Isaac Newton Group of Telescopes, La Palma, Spain

High-quality images for public outreach pushed by

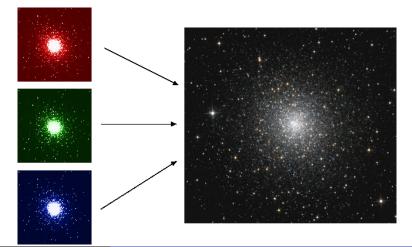
- STScI/STECF, Hubble Heritage Project
- Jean-Charles Cuillandre, CFHT
- Adam Block, NOAO
- ...

Large investment of time, long learning curve

If you find your own images here: I'm sorry!

Content

Overview


- Things that usually go wrong
- Essentials for a good picture

2 Guidelines for pretty pics

- Observations
- Data reduction
- Photoshop science

1. Overview

It looks all so simple ...

Things that usually go wrong

In the order encountered by beginners:

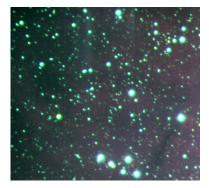
- Dynamic range compression: Saturation Background clipping
- Distortion correction
- Colour calibration
- Over-processing and under-exploitation

(C) ESO, M83, SOFI Use ESO FitsLiberator (Lars Lindberg Christensen)

Things that usually go wrong

In the order encountered by beginners:

- Dynamic range compression: Saturation Background clipping
- Distortion correction
- Colour calibration
- Over-processing and under-exploitation

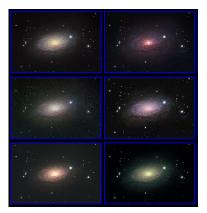


(C) ESO, Part of LMC, WFI

Things that encountered go wrong

In the order encountered by beginners:

- Dynamic range compression: Saturation Background clipping
- Distortion correction
- Colour calibration
- Over-processing and under-exploitation



(C) ESO, RCW108, WFI

Things that usually go wrong

In the order encountered by beginners:

- Dynamic range compression: Saturation Background clipping
- Distortion correction
- Colour calibration
- Over-processing and under-exploitation

(C) Jim Misti, M63

Things that usually go wrong

In the order encountered by beginners:

- Dynamic range compression: Saturation Background clipping
- Distortion correction
- Colour calibration
- Over-processing and under-exploitation

Do it right from the beginning, and your PR officer will love you

Essentials for a good pretty picture

Observing

A good observing strategy

Data reduction

- Get the relative astrometry right
- Careful sky background modelling for extended targets and multi-chip cameras
- Absolute colour calibration

(5% of all astronomers are colour blind)

Photoshop science

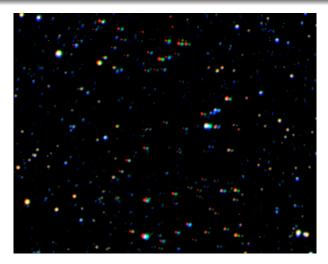
- Dynamic range compression
- Avoid over-processing

Observations Data reduction Photoshop science

2. Guidelines – Observations

No good observating strategy:

No good science No nice pics


Please do:

- Extensive (excessive) dithering: Defects, defringing, inter-chip gaps, astrometry, photometry
- Blank fields for extended targets, not only in the near-IR: Defringing, sky modelling

This holds in particular for multi-chip cameras.

Observations Data reduction Photoshop science

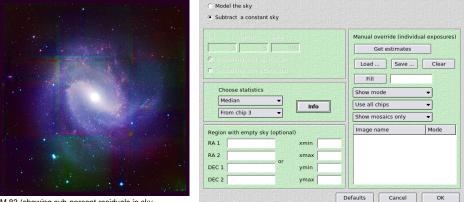
2.1 Guidelines – Astrometry

(C) ESO, Capodimonte Deep Field, WFI

Observations Data reduction Photoshop science

2.2 Guidelines – Sky subtraction

Colour pictures are excellent indicators of data reduction quality

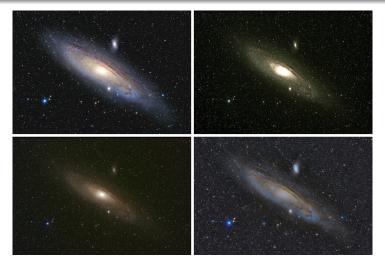


M 83, near-IR

Observations Data reduction Photoshop science

2.2 Guidelines – Sky subtraction

Colour pictures are excellent indicators of data reduction quality



M 83 (showing sub-percent residuals in sky background)

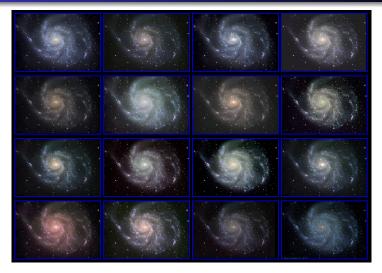
THELI sky background configuration

Observations Data reduction Photoshop science

2.3 Guidelines – Colour calibration

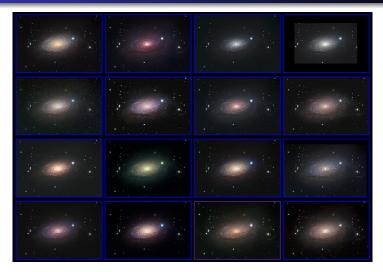
(C) M 31, Jim Misti

Observations Data reduction Photoshop science


2.3 Guidelines – Colour calibration

(C) Melotte 15, Jim Misti

Observations Data reduction Photoshop science


2.3 Guidelines – Colour calibration

(C) M 101, Jim Misti

Observations Data reduction Photoshop science

2.3 Guidelines – Colour calibration

(C) M 63, Jim Misti

Observations Data reduction Photoshop science

2.3 Guidelines – Colour calibration

M 63 with SDSS calibration

Observations Data reduction Photoshop science

2.3 Colour calibration – G2V stars

Requirement: an absolute white point

Observations of a G2V solar-type standard star.

But:

- G2 stars are rare
- If in field of view, then most likely saturated
- Nightly observations required to match atmosphere
- OPC/TAC and you won't like that waste of time
- Simply not available for archival data

Observations Data reduction Photoshop science

2.3 Colour calibration – SDSS ugr calibration

Solution: Select G2V stars photometrically

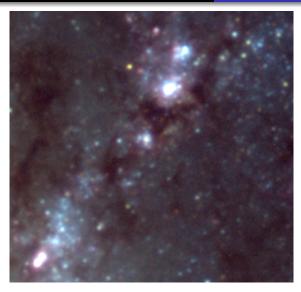
SDSSNOMAD1.38 < u - g < 1.480.62 < B - V < 0.680.34 < g - r < 0.540.30 < V - R < 0.70

Advantages:

- Internal calibration
- Almost always in the field of view
- Comes for free, no extra time

Observations Data reduction Photoshop science

Observations Data reduction Photoshop science


2.3 Colour calibration – SDSS ugr calibration

The corresponding dialogue in THELI

Red image red2 cropped.fits				
Green image green2_cropped.fits			•	
Blue image blue2_cropped.fits			-	
Method:	Pł	PHOTOMETRIC CATALOG -		
Photometric reference catalog: SDSS				
u-g 1.38	1.4	8	G2-star	
g-r 0.34	0.5	i4	defaults	
Factor Error				
Red	1.348	0.039		
Blue	1.661	0.041	Calibrate	
Green	1.000	0.000	Reset	
Based upon 13 stars				


Fall-back solution: all stars white on average This works nicely in the near-IR :-)

Observations Data reduction Photoshop science

(C) ESO, M83 spiral arm, VLT/FORS2

Observations Data reduction Photoshop science

M83 spiral arm, VLT/HAWK-I (JHKs, 0.4" seeing)

(C) Yuri Beletsky, Mischa Schirmer, Mark Gieles

Observations Data reduction Photoshop science

M83 core, HAWK-I

(C) Yuri Beletsky, Mischa Schirmer, Mark Gieles

Observations Data reduction Photoshop science

2.4 Guidelines – Photoshop science

Typical post-processing tasks

- Dynamic range compression (e.g. through FitsLiberator)
- False-colour composition (e.g. more than 3 filters)
- Noise filtering
- Sharpening (wavelet, deconvolution)
- Background flattening

Last, but not least

- Less is more, don't overdo it
- Give your eyes a rest

Observations Data reduction Photoshop science

Thank you

ESO Astronomy Communication Seminars, Garching, 19-08-2009